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Abstract 22 

We analyze the ability of CMIP3 and CMIP5 coupled ocean-atmosphere general circulation 23 

models (CGCMs) to simulate the El Niño Southern Oscillation (ENSO) and the tropical 24 

Pacific mean state. The large spread in ENSO amplitude is reduced by a factor of 2 in CMIP5 25 

and the ENSO life cycle (seasonal phase locking, location of surface temperature anomalies) 26 

are slightly improved. Other fundamental ENSO characteristics as its spectrum and central 27 

Pacific precipitation anomalies however remain poorly represented. Our analyses however 28 

reveal that CMIP5 displays an encouraging 30% reduction of the cold bias in the west Pacific. 29 

The Bjerknes and shortwave-surface temperature feedbacks, previously identified as major 30 

sources of model errors, do not improve in CMIP5. The slightly improved ENSO amplitude 31 

therefore might results from error compensations. CMIP3 and CMIP5 can thus be considered 32 

as one ensemble (CMIP3+CMIP5). The ability of CMIP models to simulate the observed 33 

nonlinearity of the shortwave feedback is assessed. This nonlinearity arises because the real 34 

atmosphere switches from subsident (positive feedback) to convective (negative feedback) 35 

regimes under the effect of seasonal and interannual variations. Only one third of 36 

CMIP3+CMIP5 models reproduce this regime shift, with the remaining models always locked 37 

in one of the two regimes. We suggest that an improved mean state results in an improved 38 

shortwave feedback non-linearity, and an improved modeled ENSO amplitude. This provides 39 

guidance on how to improve the modeled ENSO in CGCMs in a process-based way, avoiding 40 

error cancellation. In order to help choosing appropriate models for studying ENSO, we also 41 

provide a summary assessment of CMIP3 and CMIP5 models performance in terms of ENSO 42 

characteristics and key feedbacks. 43 

  44 
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1. Introduction 45 

The El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual 46 

climate variability. It is characterized by large-scale sea surface temperature (SST) anomalies 47 

in the eastern equatorial Pacific Ocean. The amplitude of the SST variations is typically of the 48 

order of 1°C and is associated to a change in the oceanic thermal structure and a switch in 49 

atmospheric circulation and convective activity. ENSO phenomenon is characterized by an 50 

irregular period ranging between 2 to 7 years. A robust feature of the warm ENSO events is 51 

the tendency for their peak to preferentially occur in boreal winter, that is, from November to 52 

January (Rasmusson and Carpenter 1982). These SST anomalies usually appear and peak in 53 

the eastern Pacific, and terminate in the central Pacific. Cold (La Niña) and warm (El Niño) 54 

ENSO phase are not symmetrical: SST anomalies are skewed to the positive values. 55 

ENSO basin-scale surface temperature fluctuations induce important changes in the 56 

tropical circulation and affects meteorological conditions globally through atmospheric 57 

teleconnections (see McPhaden et al 2006 for a review). The most direct effect of ENSO is a 58 

seesaw in surface pressure, associated with a modulation of trade winds and a shift of tropical 59 

Pacific precipitations. This impacts agriculture, water resources as well as air quality and 60 

forest fires in particular in the tropical Pacific neighboring countries (e.g. Naylor et al 2007, 61 

Nichol 1997). Knowing whether ENSO characteristics (intensity, frequency…) will change in 62 

relation with global warming is a crucial societal need. However, it is not possible to answer 63 

this question yet (Vecchi and Wittenberg 2010, Collins et al 2010). It is indeed difficult to 64 

model accurately ENSO with Coupled Global Climate Models (CGCMs) because of the 65 

complex interplay of various oceanic and atmospheric processes it involves. Understanding, 66 

anticipating, and predicting ENSO behavior on seasonal to multi-decadal time scales still 67 

poses formidable challenges (Guilyardi et al. 2009a, Wittenberg 2009).  68 

 The theoretical understanding of ENSO has significantly increased over the past 69 
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decades [see Wang and Picaut (2004) for a review]. The oscillatory tendency of ENSO is now 70 

fairly well understood. The rise of an El Niño event requires a positive ocean–atmosphere 71 

feedback, first described in a seminal paper by Bjerknes (1969), i.e. the tendency of the 72 

atmospheric response to central Pacific SST anomalies to further enhance these SST 73 

anomalies, is crucial for the growth of ENSO., A number of negative feedbacks have been 74 

proposed to explain the termination of warm (El Niño) and cold (La Niña) events, including 75 

westward-propagating upwelling Rossby waves reflected at the western boundary into 76 

equatorial upwelling Kelvin waves (Suarez and Schopf, 1988), a discharge process due to 77 

Sverdrup transport (Jin 1997), western Pacific wind-forced upwelling Kelvin waves 78 

(Weisberg and Wang 1997), and anomalous zonal advection of the warm pool (Picaut et al. 79 

1997). The preferential seasonal phase locking of the termination of El Niño warm events 80 

during boreal winter have been attributed either to a seasonal modulation of the amplitude of 81 

oceanic Kelvin and Rossby waves (Tziperman et al. 1998) or to a southward shift of the El 82 

Niño related westerly anomalies in boreal winter (Harrison and Vecchi 1999). The theoretical 83 

framework of the recharge oscillator (Jin et al 2006) provides an example of a synthetic view 84 

of ENSO fundamental processes. It shows how coupled air-sea processes can either promote a 85 

thermal damping (through the negative feedback of surface heat fluxes, but also the mean 86 

advection and upwelling), or a growth of SST anomalies. The latter results from positive SST 87 

anomalies that develop as the response of zonal advection, Ekman pumping and thermocline 88 

depth anomalies to large scale wind anomalies.  89 

 Despite progresses in understanding and simulating basic ENSO features, CGCMs from 90 

the third Coupled Models Intercomparison Project (CMIP3) were still struggling with its 91 

simulation. The CMIP3 database in particular displays a large diversity of ENSO amplitude 92 

(van Oldenborgh et al 2005, Guilyardi 2006, Yu and Kim 2010), a tendency to produce a 93 

regular biennal oscillation rather than a broad spectral peak in the 3-8 year band, a poorly 94 
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represented seasonal phase locking (AchutaRao and Sperber 2006, Guilyardi et al 2009a) and 95 

variability that extends too far into the western Pacific (Leloup et al. 2008, Yu and Kim 96 

2010). The CMIP3 models also have limited skills in simulating the long-term mean and 97 

annual cycle in the tropical Pacific Ocean. This has been pointed out as a probable origin for 98 

part of the diagnosed biases in the modeled ENSO (van Oldenborgh et al 2005, Guilyardi 99 

2006). The biases in ENSO characteristics are also associated with issues in representing the 100 

individual ENSO mechanisms (van Oldenborgh et al 2005, Kim and Jin 2011): for instance, 101 

van Oldenborgh et al (2005) showed that most CMIP3 models have a too weak wind response 102 

to SST anomalies. This impacts thermocline variability, zonal advection and thermal damping 103 

with the possibility of error cancellations (Kim and Jin 2010). 104 

Several CGCM analyses point out the central role of the atmospheric component in 105 

shaping the modeled ENSO (Guilyardi et al 2004, Capotondi et al. 2006, Lengaigne et al 106 

2006, Toniazzo et al 2008, Kim et al. 2008, Guilyardi al. 2009b, Watanabe et al. 2010, Lloyd 107 

et al. 2011), with a special emphasis on convective processes (Neale et al. 2008 Wittenberg et 108 

al 2003, Wu et al 2007, Guilyardi et al 2009a, Lengaigne and Vecchi 2010, Watanabe et al 109 

2011). The main atmospheric processes driving ENSO evolution are usually described simply 110 

as two linear feedbacks (see Jin et al 2006): (i) the dynamical Bjerknes feedback (μ , 111 

Bjerknes 1969) and (ii) the heat flux feedback (α, Zebiak and Cane 1987). The Bjerknes 112 

feedback μ is defined as the coupling coefficient between equatorial SST anomalies (within 113 

the 160°E-150°W, 5°N-5°S region, also known as Niño-3) and the remote zonal wind stress 114 

response (within the 150°W-90°W, 5°N-5°S region, also known as Niño-4). μ is a measure 115 

of the positive retroaction that gives rise to ENSO. The heat flux feedback, α, is measured as 116 

the coupling coefficient between surface heat fluxes (within the Niño-3 region) and SST 117 

anomalies in the same region. It is usually a negative feedback that can be broken into four 118 
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components (Lloyd et al 2009, 2011 and 2012), dominated by the shortwave (αSW) and latent 119 

feedbacks (αLH). 120 

As pointed out by Zebiak and Cane (1987) and Barnett et al. (1991) a linear shortwave 121 

feedback is a crude approximation of the complex cloud processes involved in ENSO. The 122 

shortwave feedback is indeed quite different depending on the stability of the atmosphere. In 123 

unstable situations, a higher SST leads to an increase in convection, high clouds, and a 124 

decrease in surface shortwave flux: the shortwave feedback (α SW) is negative in the 125 

convective regime. Under stable conditions, a higher SST destabilizes the atmospheric 126 

boundary layer and prevents the formation of stratiform boundary layer clouds (Philander et 127 

al 1996, Xie 2005). This leads to an increase in shortwave flux at the surface: αSW is a 128 

positive feedback in the subsident regime. In nature, the shortwave feedback indeed tends to 129 

be negative for warm SST anomalies and positive for cold SST anomalies. Lloyd et al. (2012) 130 

discuss the nonlinearity of the shortwave feedback in CMIP3 climate models and stress its 131 

importance for correctly modeling ENSO.  132 

In line with the approach proposed by Gleckler et al (2008) to characterize model 133 

performances, a CLIVAR Pacific Panel working group has proposed a set of standard metrics 134 

for ENSO (Guilyardi et al 2009b). These metrics describe both ENSO variability (in terms of 135 

SST and precipitation anomalies in selected regions) and the background tropical Pacific 136 

mean state. This set of metrics can usefully be complemented by the analysis of Bjerknes and 137 

heat flux feedbacks, that give more insights on whether ENSO is correctly simulated for the 138 

right reasons (e.g. Lloyd et al 2009). 139 

In this paper, we present an assessment of basic ENSO properties and associated 140 

feedbacks in CMIP5 control simulations, and a comparison with CMIP3. Section 2 presents 141 

the datasets and metrics used to assess ENSO in CMIP models. A synthetic view of ENSO 142 

simulation in CMIP5 models and of the main changes with respect to CMIP3 is provided in 143 
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section 3. Section 4 addresses the representation of atmospheric feedbacks in the models. Our 144 

analysis of process-based metrics shows that the heat flux feedback, and in particular its 145 

shortwave component, remains a large source of uncertainties in CMIP3 and 5 models. 146 

Building on Lloyd et al (2012), we explore the shortwave feedback, its nonlinearity and its 147 

potential implications on simulated ENSO characteristics in more details in Section 5. Section 148 

6 presents a synthesis of ENSO and of the main atmospheric feedbacks representation in each 149 

model. Section 7 provides a summary and discussion. 150 

 151 

2. Datasets and methods 152 

The Coupled Models Intercomparison Project aims at coordinating climate change 153 

experiments. CMIP3 experiments provided basic material for scientific studies used in the 154 

Intergovernmental Panel on Climate Change  (IPCC) Fourth Assessment Report (AR4, Meehl 155 

et al 2007), while CMIP5 have been designed to prepare the AR5 (Taylor et al 2012). We use 156 

multi-century pre-industrial simulations for the entire CMIP3 ensemble (24 models) and for 157 

33 available models from CMIP5. Simulation are at least 100 years-long but more than half of 158 

them (32 out of 57) are 500 years or longer (Table 1) as required to ensure statistical 159 

robustness for the computation of ENSO spectra (Wittenberg 2009, Stevenson et al. 2010). 160 

We use monthly-averages outputs on the atmospheric grid for SST, zonal surface wind stress, 161 

surface precipitation and the net heat flux and its components (radiative and turbulent heat 162 

fluxes). Monthly anomalies are computed by subtracting the experiment-average seasonal 163 

cycle. Metrics for each climate model are compared against similar measures derived from 164 

observations. We use the HadISST1.1 1900-1999 Sea Surface Temperature (SST) from 165 

Rayner et al. (2003) for determining the spectrum of SST anomalies timeseries, ERA40 SST 166 

and zonal surface wind stress (Uppala et al. 2005), CMAP precipitation (Xie and Arkin 1997) 167 

and OAFlux surface fluxes (Yu and Weller 2007). 168 
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We use the metrics developed within the CLIVAR Pacific Panel, which assess the 169 

tropical Pacific mean state and interannual variability. The four ENSO metrics encompass 170 

ENSO amplitude (Niño-3 SST standard deviation), structure (Niño-3 and Niño-4 amplitudes), 171 

frequency (RMSE of Niño-3 SSTA spectra) and heating source (Niño-4 precipitation standard 172 

deviation). Two additional metrics are defined in this study: a measure of the amplitude of the 173 

ENSO biennial component (the ratio of the Niño-3 SST anomaly timeseries power in the 3-8 174 

years and 1-3 years bands) and measure of the seasonality of ENSO (ratio between winter 175 

November-January over spring March-May average Niño-3 SST anomalies standard 176 

deviations). The other metrics are defined as the RMSE of annual average simulated mean 177 

state against the observed one diagnosed using SST, zonal wind stress, precipitation and 178 

surface heat flux. The last metric evaluates the simulated annual cycle of SST in Niño-3 179 

(Guilyardi and Wittenberg 2010).  180 

An additional diagnosis allows to assess the spatial characteristics of ENSO events in 181 

CMIP3/CMIP5 ensembles. El Niño and La Niña events are defined as in Leloup et al. (2008) 182 

using the mean SST anomalies along the equatorial Pacific (150
o
E-90

o
W, 5

o
S-5

o
N). For each 183 

model, we compute a threshold t corresponding to half of the standard deviation of this time 184 

series. We define El Niño (resp. La Niña) as any period for which mean equatorial Pacific 185 

SST anomalies are greater (resp. lower) than t (resp. minuq t) during at least six consecutive 186 

months. The onset, peak and termination of an El Niño (La Niña) event are then defined as 187 

respectively the beginning, maximum (minimum) and end of the period above the threshold. 188 

For each of those phases (onset, peak and termination), the position of the maximum 189 

(minimum) along the equatorial region is located, dividing the equatorial Pacific in three main 190 

regions: West (150
o
E-170

o
W, 5

o
S-5

o
N), Central (170

o
W-130

o
W, 5

o
S-5

o
N), and East (130

o
W-191 

90
o
W, 5

o
S-5

o
N).  192 
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The atmosphere process-based metrics are computed following Lloyd et al (2009, 193 

2012). The Bjerknes feedback μ is computed as the linear regression coefficient between 194 

Niño-4 average zonal surface wind stress monthly anomaly τx’ and Niño-3 average SST 195 

monthly anomaly SST’, that is <τx’>Niño-4=μ<SST’>Niño-3 where <…>Niño-3 means spatial 196 

average over Niño-3 region. Whereas the Bjerknes feedback is a non local large-scale 197 

response to a large-scale SST anomaly, the heat flux feedback is a local response to local SST 198 

variations. The net heat flux feedback α is thus computed as the spatial average over Niño-3 199 

of the point-wise regression coefficient of the net heat flux monthly anomaly Q’ and SST’, 200 

that is α =< αr >Niño-3 where αr satisfies Q’(r)=αrSST’(r) for each region r in Niño-3. The 201 

four components of α are computed in the same way by replacing Q’ by the considered 202 

component (sensible and latent heat fluxes and shortwave and longwave fluxes).  203 

 204 

3. ENSO in coupled models : from CMIP3 to CMIP5 205 

We present a synthetic view of how ENSO is modeled usingthe  CLIVAR Pacific 206 

Panel metrics (Guilyardi et al 2009b). These metrics can be divided into two groups: those 207 

characterizing ENSO variability and those characterizing the climate mean state in which this 208 

variability occurs. Figure 1 sums up ENSO characteristics for CMIP3 and CMIP5 models in 209 

comparison to observations. Even though we discuss the main multi-model features, the 210 

figure shows the metrics for all centers and models. 211 

Figures 1a and b show that the average of modeled ENSO amplitude in CMIP5 (red 212 

squares) and CMIP3 is comparable to observations in both Niño-3 and 4. However, the range 213 

of CMIP5 ENSO amplitude spread around the observed value is reduced by about half 214 

compared to CMIP3 in the two regions (whiskers). This is a clear improvement over the 215 

CMIP3 ensemble where ENSO amplitude diversity was larger than could be explained by 216 
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observational variability (e.g. Guilyardi et al 2009a). Indeed, 65% of CMIP5 Niño-3 and 217 

Niño-4 ENSO amplitudes fall within 25% of the observed value against 50% for CMIP3.  218 

One of the most important features of ENSO in terms of climate impacts and 219 

teleconnections is its impact on atmospheric convection and hence on precipitation and large-220 

scale circulation (e.g. McPhaden et al 2006). This is evaluated here using the standard 221 

deviation of Niño-4 precipitation anomalies (Fig. 1c). Most models tend to underestimate 222 

ENSO-related interannual anomalies of the convective activity in the central Pacific. There is 223 

no clear improvement of the average value of the metric in CMIP5 compared to CMIP3 224 

(~40% of ENSO-related convective activity falls within 25% of the observed value for both 225 

CMIP3 and CMIP5). 226 

The 2-7 year timescale is a key property of ENSO variability that is difficult to 227 

correctly represent in climate models. In order to evaluate the ability of a model to simulate 228 

correctly ENSO timescale, we compute here the RMS difference (in °C
2
) of simulated and 229 

observed Niño-3 SST monthly anomaly spectra. This spectral metric (Fig. 1d) hardly shows 230 

any change from CMIP3 to CMIP5. Figure 2a shows the Niño-3 SST anomaly spectra for the 231 

reference and two examples from CMIP3 and CMIP5. This illustrates the tendency for some 232 

models to represent ENSO with a too short period of about 2 years (MIUB and BCCCSM1.1) 233 

or having a spectral peak for longer periods (between 3-8 years like CSIROmk35 and 234 

MIROC5). Therefore, the ENSO spectra characteristics are further studied by computing the 235 

ratio between the energy in the 1-3 years band and the one in 3-8 years band (Fig. 2b). The 236 

observations show a ratio of 1.2 (i.e. slightly more spectral power in the lower frequency 237 

range). Both ensemble show a large diversity among the models: some models have twice as 238 

much energy in the 1-3 years band than in the 3-8 years band, for some others this ratio is 239 

inverted. According to this analysis, some improvement can be seen from CMIP3 to CMIP5: 240 

25% of CMIP3 models against 40% of CMIP5 models exhibit a ratio within 25% of the 241 
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observed one. Note that Wittenberg (2009) and Stevenson et al. (2010) show that a minimum 242 

of 300 to 500 years is necessary to accurately evaluate the ENSO spectrum. As reliable 243 

observational records are still quite short, even the real ENSO spectrum remains uncertain.  244 

ENSO variability is characterized by a strong phase locking to the seasonal cycle with 245 

maximum of SST anomaly in November-January and a minimum in March-May (Fig. 3a). 246 

This ENSO phase locking is particularly important for ENSO teleconnections and for instance 247 

for the link between El Niño and the Indian summer monsoon (e.g. Webster et al 1998). On 248 

average, both CMIP3 and CMIP5 ensemble show a comparable though weaker than observed 249 

seasonal phase locking (Fig. 3a). Of course, individual models show a variety of behavior 250 

with ENSO peaks during any season. In both ensembles 50% of the models show a peak in 251 

November-January. Figure 3b shows the seasonality metric defined as the ratio of SST 252 

anomaly seasonal cycle between November-January and March-May. This metric synthetizes 253 

both seasonal amplitude and phase of the modeled ENSO signal. There is 55% of CMIP5 254 

models against 40% of CMIP3 models that have ENSO seasonality metric within 25% of the 255 

observed one. In particular some models from CMIP5 ensemble show a seasonality that is 256 

very close to the observed one (BCC-CSM1, CanESM2, GFSL-ESM2G, GISS and FGOALS 257 

models, MIROC4h, NCC and CESM1 models, see Fig. 3b). So ENSO seasonal phase locking 258 

is slightly improved from CMIP3 to CMIP5.  259 

The surface warming (cooling) pattern associated to an El Niño (La Niña) event 260 

evolves during its life cycle, and impacts ENSO teleconnections (e.g. Webster et al 1998). 261 

Figure 4 shows the position of the maximum SST anomaly for each phase (onset, peak, 262 

termination) for the observations, CMIP3 and CMIP5. For El Niño onset (Fig. 4a), CMIP3 263 

and CMIP5 models ensemble mean both underestimate the percentage of onsets with a 264 

maximum in the Eastern Pacific (65% vs. 80% in observations) while they tend to 265 

overestimate onsets with a maximum in the Central and West Pacific. CMIP5 models on 266 
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average correctly simulate 75% of La Niña onsets in the eastern Pacific (Fig. 4d), an 267 

improvement with respect to CMIP3 (only 65%). Both CMIP ensembles tend to 268 

underestimate the observed number of El Niño (~80%) and La Niña (~90%) peaks in the 269 

central Pacific, with a slight improvement in CMIP5 (an average of 60% El Niño events 270 

peaking in the eastern pacific compared to 45% in CMIP3). Both CMIP ensembles tend to 271 

produce unrealistic ENSO terminations in the western Pacific, and less terminations than 272 

observed in the central Pacific (Figures 4c and 4f), with some improvement in CMIP5 against 273 

CMIP3. Figure 4g provides a more detailed view of the percentage of central Pacific El Niño 274 

peaks in individual models. Some models simulate only 10% of El Niño events with a 275 

maximum in the eastern Pacific while others reach values close to 100%. 276 

  Simulated and observed ENSO characteristics may depend on the mean state in the 277 

tropical Pacific Ocean (e.g. Wang and An 2002, Guilyardi 2006, Sun et al 2009). Here we 278 

discuss tropical Pacific background biases relevant to ENSO variability in CMIP3 and 279 

CMIP5. The multi-model ensemble-average mean state metrics (Fig. 5) only show small 280 

changes from CMIP3 to CMIP5. There is a deterioration of the simulation of the east Pacific 281 

average net surface flux (Fig. 5e) with an average error exceeding 40Wm
-2

 for Niño-3 region. 282 

Other CMIP5 mean state metrics show slight if any improvement compared to CMIP3 and the 283 

mean errors remain large. The SST mean state in the tropical Pacific ocean exhibits errors of 284 

about 1.5°C on the average for both ensembles (Fig. 5a), the mean zonal wind stress at the 285 

Equator in the Pacific shows errors of about 1.5 10
-2

 N.m
-2

 (Fig 5c), and the average 286 

precipitation in the Indo-Pacific region shows RMSE of roughly 2 mm.day
-1

 (Fig. 5d). There 287 

is however a bit more convergence amongst models in CMIP5 (slightly smaller spread in 288 

Tropical Pacific SST, precipitation and wind stress rms-error, and nino3 SST seasonal cycle 289 

than in CMIP3). The SST seasonal amplitude in Niño-3 has for example less extreme values 290 
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in CMIP5 than in CMIP3 (Fig. 5b; 60% of CMIP5 models have values within 25% of the 291 

observed one against 45% only for CMIP3). 292 

The zonal structure of the coupled system at the equator determines the interaction 293 

between ENSO and the mean state (Wang and Picaut 2004). To gain insights on the simulated 294 

mean state in CMIP3 and CMIP5, we show the average SST and zonal surface wind stress at 295 

the equator on Figure 6. The 1°C cold bias in the western equatorial Pacific is reduced by 296 

roughly one third in CMIP5, but it remains unchanged in the east (Fig. 6a). The warm bias in 297 

the far eastern Pacific (east of 260°E) remains similar in the two ensembles. There is however 298 

a better representation of the zonal SST gradient in CMIP5 (Fig. 6a), with a corresponding 299 

improvement of the average zonal wind stress in the central Pacific (Fig. 6b). Around 140°W, 300 

the bias in CMIP3 is reduced by roughly 40% in CMIP5 giving a better zonal wind stress 301 

gradient along the equator. Yet, both CMIP3 and CMIP5 exhibit an easterly stress bias west 302 

of the dateline. 303 

 304 

4. Atmosphere process-based metrics 305 

The analysis of Kim and Jin (2011) suggests that both the heat flux and Bjerknes 306 

feedbacks contribute to CMIP3 model errors. It is thus interesting to investigate if there is any 307 

progress in the representation of those feedbacks in the CMIP5 ensemble. 308 

As shown on Fig. 7a, there is no qualitative change in the multi-model ensemble 309 

average Bjerknes feedback μ. On average, μ is similar for CMIP3 and CMIP5, with most 310 

models underestimating the amplitude of this positive feedback by 20 to 50%. Only 20% of 311 

CMIP3 and CMIP5 models fall within 25% of the observed value (12 10
-3

 Nm
-2

/C) of the 312 

Bjerknes feedback. The observed heat flux feedback α (-18 Wm
-2

/C, Fig. 7b), is similarly 313 

underestimated by most CMIP3 and CMIP5 models. There is a large spread among models 314 

and only 10% of CMIP3 and CMIP5 models fall within 25% of the observed value.  315 



 14 

To gain insights on the reason for such a large spread in modeled α, we investigate its 316 

two major components: the shortwave and the latent heat flux feedbacks (Lloyd et al 2012, 317 

Figure 7c and d). Despite a degradation of the background mean state net heat fluxes in Niño-318 

3 (Fig. 5e), α does not show a corresponding evolution between CMIP3 and CMIP5 (Fig. 319 

7b). In addition, the latent heat flux feedback is on average improved in CMIP5: although 320 

most models still underestimate the amplitude of this negative feedback, more CMIP5 models 321 

(50%) fall within 25% of the observed αLH than in CMIP3 (one third).  322 

CMIP3 and CMIP5 ensembles both poorly reproduce the observed shortwave 323 

feedback value of -7 Wm
-2

K
-1

, with ensemble average values of sw close to zero. (Fig. 7c). 324 

The diversity in simulated α(standard deviation of about 4Wm
-2

/C for both CMIP3 and 325 

CMIP5) is clearly due to the large diversity of αSW in both ensembles (standard deviation of 326 

about 5Wm
-2

/C for both CMIP3 and CMIP5), as already shown by Lloyd et al (2012) using 327 

CMIP3. In the CMIP5 ensemble, there are broadly two distinct groups of models: those 328 

producing a positive αSW, and those producing a negative αSW as observed. Only 10% (3) of 329 

CMIP5 models display a αSW value within 25% of the observed one, against 5% (one model) 330 

for CMIP3. CMIP5 models still struggle to represent convection and cloud processes (e.g. 331 

Jiang et al 2012). Yet, these processes are critical for the simulation of the shortwave 332 

feedback as showed by Lloyd et al (2011, 2012).  333 

 334 

5. Nonlinearity in atmospheric SW flux feedback 335 

 336 

As demonstrated in the previous section, the diversity in shortwave feedback is the 337 

major contributor to the diversity in heat flux feedback, and hence propably a major 338 

contributor to errors in the simulated ENSO (Kim and Jin, 2011). In particular, this feedback 339 
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is actually not linear (Zebiak and Cane 1987, Barnett et al 1991). The shortwave feedback (α340 

SW) is indeed negative for warm SST anomalies (El Niño conditions) and positive for cold 341 

SST anomalies (La Niña conditions). Lloyd et al. (2012) depict the nonlinearity of shortwave 342 

feedback in CMIP3 models and stress the importance of its representation for a proper 343 

representation of ENSO. This section aims at gaining further insights on this particular issue. 344 

The changes between CMIP3 and CMIP5 regarding ENSO variability and the process-based 345 

metrics results (figures 1 to 7) are relatively modest. We hence group all model simulations 346 

into a larger ensemble, and distinguish members within this ensemble depending on the 347 

ability of each model to represent the shortwave feedback nonlinearity.  348 

Lloyd et al. (2012) estimates αSW nonlinearity from the difference αSW
-
-αSW

+
 of the 349 

linear regression coefficient of shortwave flux anomaly computed separately for positive (α350 

SW
+
) and negative (αSW

-
) SST anomalies in the Niño-3 region. This approach is justified from 351 

the scatterplots of observed shortwave against SST anomalies (fig. 8b in green) which 352 

displays a roughly linear behavior by segment with a breakpoint roughly around 0°C. More 353 

advanced methods of segmented linear regression, with a breakpoint determined iteratively 354 

for each particular model, were applied without qualitative changes in the conclusions. We 355 

thus stick to the Lloyd et al. (2012) method for the sake of simplicity and consistency with 356 

this previous study.  357 

Figure 8a-c shows examples of monthly shortwave against SST anomalies in Niño-3 358 

for three selected models. Some models display an αSW which is always positive (Fig. 8a) or 359 

negative (fig. 8c), irrespective of the sign of SST anomalies, i.e. with weak nonlinearity in the 360 

Niño-3 shortwave feedback. These two types of models are characterized by a single 361 

atmospheric regime-like behavior in eastern equatorial Pacific that is either mainly subsiding 362 

(the SUB type corresponding to an always positive αSW, 23 models, fig. 8d, and Table 1) or 363 

mainly convective (the CONV type corresponding to an always negative αSW, 12 models, 364 
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fig. 8f). The 21 remaining models (the MIX type, Fig 8b and e) display a comparable 365 

behavior to observations with a shift from positive αSW
-
 (subsident condition) for negative 366 

SSTA in Niño3 to a negative αSW
+
 (convective conditions) for positive SSTA in Niño3. 367 

Table 1 provides the regime (MIX, CONV or SUB) of each model analysed in this study. 368 

Figure 8e shows that some models manage to reproduce αSW
-
 (La Niña conditions) orαSW

+
 369 

(El Niño conditions) with the correct order of magnitude.  370 

Figure 9 shows that the amplitude of ENSO-related SST variation and the nonlinearity 371 

in αSW are strongly related with a positive linear correlation coefficient of 0.71 (significant at 372 

99%). By construction, models with large αSW nonlinearity are characterized by a MIX-type 373 

αSW with a change of regime from subsiding to convective for SST<0 and >0 respectively. 374 

These models also show the largest ENSO amplitude. Interestingly, MIX-type models also 375 

have the strongest precipitation response to ENSO in Niño-4 (Table 2) followed by CONV-376 

type models, and SUB-type models showing the weakest value. One likely reason for  377 

strongest ENSO amplitude in MIX-type models is that strong SST interannual variations are 378 

responsible for the nonlinearity in αSW. In other words, strong SST variations are necessary 379 

to switch the atmospheric regime between SUB and CONV in Niño3. On the other hand, the 380 

change in atmospheric regime on the ENSO amplitude certainly impacts on the simulated 381 

atmospheric feedbacks: When αSW nonlinearity is weak, αSW has always the same sign, 382 

positive for SUB-type and negative for CONV-type (Fig. 8d and f). Taking only αSW into 383 

account, this would mean amplified SST variations for SUB-type and damped for CONV-384 

type with MIX-type models lying in-between. However, αSW is not the only feedback that 385 

depends strongly on the atmospheric regime. The Bjerknes feedback depends on the SST 386 

anomaly but also on elevated convective heating associated to convection over Niño-3 387 

according to the Gill model (Gill 1980, Chiang et al 2001). Simulated Niño-3 average 388 
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precipitation and Bjerknes feedback are indeed linearly correlated at 0.55 among 389 

CMIP3+CMIP5 models (significant at 99%). This explains why SUB-type models tend to 390 

have a weaker average Bjerknes feedback than CONV-type models (Table 2) with again 391 

MIX-type models lying in-between. It is however not possible to interpret further the impact 392 

of these changes in feedbacks on ENSO amplitude. This would certainly require an additional 393 

analysis of the oceanic response to these atmospheric feedbacks that is beyond the scope of 394 

this study. At this point, the link between the nonlinearity in shortwave feedbacks and ENSO 395 

amplitude remains thus an open question.  396 

Lloyd et al (2012) suggested that nonlinearity of shortwave feedback might play a role 397 

in ENSO skewness, by being positive in La Niña conditions and negative in El Niño. We did 398 

not find any clear link between αSW nonlinearity and Niño-3 SST anomaly asymmetry (linear 399 

correlation coefficient of 0.2). Yet, stratifying the multi-model database by their regime types 400 

(Fig. 10a), it is clear that the seasonal variations of αSW differs from one type to another: 401 

Whereas SUB types models show a constant positive shortwave feedback throughout the 402 

year, CONV and MIX types models show a clear decrease of αSW during winter and spring. 403 

This seasonal increase in the αSW ENSO damping term corresponds to the warmest SST and 404 

the associate increase in convective activity in eastern Pacific that is also observed. The 405 

spring minimum in ENSO amplitude (Fig. 3b) corresponds to this largest negative αSW 406 

feedback (i.e. triggering of convection) in observation. Although weaker, this is also the case 407 

for MIX and CONV-type models (fig. 10a). The simulated increase of the negative shortwave 408 

feedback may thus contribute to damp SST anomalies during spring, and hence contribute to 409 

the phase locking of ENSO amplitude for MIX and CONV models. Figure 10b shows the 410 

scatterplot of the ENSO seasonal metric (fig3b) against the average value of αSW in March-411 

April-May. In spite of the large spread, there is indeed a clear link between the ability of the 412 

model to have a strong shortwave damping in spring and its ability to reproduce a clear 413 
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seasonal ENSO phase locking (linear correlation coefficient of -0.51, significant to the 99% 414 

level). Table 2 summarizes the average ENSO seasonal metric and the March-April-May 415 

average αSW for the different types of models. MIX and CONV types model tends to have an 416 

ENSO seasonal metric closer to the observed (1.45) associated with a negative αSW during 417 

spring. This suggests that a model has to be able to reproduce the seasonal switch to the 418 

convective regime in order to represent this fundamental characteristic of ENSO. 419 

 We now explore the link between the ability of the models to represent the different 420 

regime in the eastern Pacific and their simulated mean state. Figure 11 represents the average 421 

equatorial Pacific mean state in SST and zonal wind stress for SUB, MIX and CONV-type 422 

models (to be compared to Fig. 6). On average, CONV-type models are the warmest with 423 

comparable negative bias in the western Pacific Ocean (of about 0.5°C) but the strongest 424 

positive one in the east (up to 1°C, Fig. 11a). This warm bias in the east may partly explain 425 

the fact that these models are characterized by convective regime in Niño-3. SUB-types 426 

models show a cold bias over all longitudes west of 260°E, coherent with enhanced trade 427 

winds over the Pacific Ocean, and thus a stronger Walker circulation. MIX-type models are 428 

comparable to CONV-type models in the western Pacific and to SUB-type in the east. In 429 

particular, the zonal SST gradient is stronger and closer to the observed one for MIX-type 430 

models. The difference in equatorial zonal wind stress between the different types of models 431 

is less clear (Fig. 11b), especially in the Central Pacific. MIX-type models however display an 432 

equatorial zonal wind stress mean state that is closer to observations. Figure 12 shows the link 433 

between the equatorial zonal SST gradient / mean biases and the nonlinearity of the shortwave 434 

feedback. Linear correlation coefficients are relatively low (c=0.25 is not significant at the 435 

95% level) but Spearman rank correlations are both significant at the 99% level. This implies 436 

that a mean state close to the observations, i.e weaker mean bias and better SST zonal 437 

gradient, will enable strong nonlinearities in the shortwave feedback, i.e. switches from 438 
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subsident to convective regime in the eastern Pacific Ocean, which are associated to an 439 

improved  ENSO amplitude simulation (figure 9).  440 

6. ENSO and atmospheric feedbacks scores 441 

This section provides a synthesis of each CMIP3 and CMIP5 model performances in 442 

terms of ENSO. In order to characterize how models represent basic features of ENSO, a sub-443 

set of four metrics are selected: the Niño-3 SST anomaly variability (fig. 1a) to depict the 444 

simulated ENSO amplitude; the percentage of El Niño events peaking in the eastern Pacific 445 

(fig. 4g) to qualify ENSO spatial structure; the ratio of power within the 3-8 year and 1-3 year 446 

bands (fig. 2b) to describe the ENSO spectrum; and the ratio between Niño-3 SST anomaly 447 

standard deviation in November-January and March-May (fig. 3b) to represent ENSO 448 

seasonal phase locking. For each metric m and each model i, we compute ei, the absolute 449 

value of the error compared to observations (ref) that is normalized by the CMIP3+CMIP5 450 

intermodel standard deviation (σCMIP3+CMIP5) following: 451 

         (1) 452 

An overall ENSO score is then define as the average of these normalized errors, the 453 

lower the ENSO score, the better the model represents the basic characteristics of ENSO on 454 

the average. Because models can however correctly simulate ENSO with erroneous physical 455 

feedbacks (e.g. Guilyardi et al 2004), we also use the four processed-based metrics presented 456 

in this study (Fig. 7) in order to evaluate the fidelity of simulated atmospheric feedbacks. The 457 

normalized errors of μ, α, αSW and αLH are computed following (1) and their average defines a 458 

“Feedback score” for each model in the same fashion as for the “ENSO score”. The 459 

normalized errors for each selected metric and the ENSO and Feedback scores are reported on 460 

Figure 13. Note that lower scores values correspond to better skill in representing ENSO and 461 

its atmospheric feedbacks.  462 
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The average ENSO score for CMIP5 models is 0.87 (std. dev. 0.34). This shows some 463 

improvement compared to the 1.27 (std. dev. 0.47) average score for CMIP3. In contrast, the 464 

average Feedback score of CMIP5 is 1.66 (std. dev. 0.62) and is close to the average score of 465 

CMIP3 ensemble that is 1.84 (std. dev. 0.62). This indicates that fundamental air-sea 466 

interactions responsible for ENSO amplitude are still poorly represented in CMIP5. 25% (8) 467 

of CMIP5 models however have a Feedback score inferior to 1 compared to less than 10% (2 468 

models) for CMIP3. 469 

Figure 14 shows the scatterplot of the ENSO score as a function of the Feedback score 470 

for all models. There is no clear correlation (linear correlation coefficient of 0.03) between the 471 

two scores. Some models such as MIUB (CMIP3, 16_c3 on fig. 14) have relatively good 472 

atmospheric feedbacks (Feedback score lower than 1) but somehow the modeled ENSO 473 

characteristics are not accurate (large ENSO score of 2.3). On the contrary, GFDL-ESM2G, 474 

HadGEM2s, MPI-ESMs, and NCCs (CMIP5, respectively 9b, 17 a and b, 18a and c and 21a 475 

and b on fig. 14) show relatively good ENSO characteristics (ENSO score lower than 1) 476 

despite an improper representation of the feedbacks with Feedback score of 1.5 and higher 477 

(Fig. 14). This certainly reflects the importance of oceanic feedbacks for ENSO, but it can 478 

also be the sign of the interplay of compensating errors. 479 

Taking advantage of the large CMIP3+CMIP5 ensemble, we have been able to 480 

distinguish the models considering their ability to simulate changes in the atmospheric regime 481 

in the eastern Pacific Ocean. Colors on Figure 14 refer to the type (SUB in blue, MIX in black 482 

and CONV in red) of the model. For these three categories, the average ENSO score is 483 

comparable (around 1.05 with standard deviations of about 0.5). One can however note, that 484 

among the models with the best ENSO score (of less than 0.5), two are of MIX (NorESMs) 485 

and CONV types (FGOALSg2) and one of the SUB type. The average Feedback scores are 486 

clearly better for CONV (1.15, std. dev. of 0.47) and MIX (1.63, std. dev. of 0.54) than for 487 
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SUB (2.15, std. dev. 0.44) as a result of better representation of the Bjerknes feedback 488 

(stronger μ on the average, see Table 2) and of the negative shortwave feedback whereas SUB 489 

tends to produce a positive shortwave feedback (fig. 8).     490 

It would be tempting to define a ranking of models from this analysis and rule out 491 

models for ENSO studies. However, these scores are based on a sub-set of metrics with no 492 

particular hierarchy between them. The results displayed in figures 13 and 14 may thus be 493 

seen as a proposition for the use of the synthetic information contained in metrics and not as a 494 

precise and definitive ranking of the models. Both the choice of the metrics and the method to 495 

compute the scores can be revisited according to one’s specific interest. Here we are 496 

interested in particular in characterizing the ability of the model to correctly simulate the basic 497 

features of ENSO together with the atmospheric feedbacks. In this context, these scores 498 

remain interesting to compare groups of models and in particular to detect the evolution from 499 

CMIP3 to CMIP5. The CMIP5 FGOALSg2, GISS2E models, CESM1-FASTCHEM, 500 

MIROC4h, CNRM-CM5, GFDL-ESM2-M, CCSM4 models and the CMIP3 CCCMAt63 501 

model all have both ENSO and Feedback scores below 0.4. These models, that are all of the 502 

CONV or MIX-type, may thus be more appropriate to study ENSO mechanisms. 503 

 504 

7. Conclusion and discussion  505 

7.1 Summary  506 

The CMIP5 multi-model ensemble does not exhibit a quantum leap in ENSO 507 

performance compared to CMIP3. The ENSO amplitude however exhibits less diversity in 508 

CMIP5 than in CMIP3: 65% of CMIP5 models ENSO amplitude falls within 25% of the 509 

observed value against 50% for CMIP3. The ENSO life-cycle is also slightly improved in 510 

CMIP5. There are in particular improvements in ENSO seasonal phase locking (fig. 3b) and 511 

in the location of the strongest SST anomalies during the onset and peak phases of El Niño 512 
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and La Niña (fig. 4). ENSO termination however tends to occur much more to the west than 513 

in observations in both CMIP3 and CMIP5. The multi-model mean state ensemble average 514 

does not change radically between CMIP3 and CMIP5 either. There are however some 515 

improvements in the simulation of the mean SST and zonal wind stress in the equatorial 516 

Pacific (Fig. 6) in CMIP5, associated with a reduction of the CMIP3 cold bias in the Western 517 

Pacific by 30 to 40 %. This modest improvement in the simulated mean state may explain the 518 

slight improvement in ENSO characteristics although it is difficult to conclude firmly on that 519 

topic. Only a few models score better for all metrics and most have pluses and minuses. 520 

We also evaluated simple metrics of the atmospheric feedbacks (Bjerknes and heat 521 

flux feedbacks) that are thought to play a major role in ENSO physics (Guilyardi et al 2009). 522 

Examination of these important physical feedbacks (Kim and Jin 2011) shows no clear 523 

improvement in a multi-model sense, although some models do improve. This highlights that 524 

there is still potential for error cancellation in CMIP5 models. In other words, the 525 

convergence of ENSO amplitude in CMIP5 may not be grounded on physical processes. Most 526 

CMIP5 models still underestimate the observed positive Bjerknes feedback (on average by 527 

roughly 30%). Finally, comparing CMIP3 and CMIP5 reveals that, whereas the latent heat 528 

flux feedback is improved due to its close relationship with SST variations (Lloyd et al. 529 

2011), the shortwave feedback remains a dominant source of errors. The convergence of the 530 

simulated interannual SST variability from CMIP3 to CMIP5 might thus be the sign that 531 

ENSO basic features are now taken into account when tuning the models, rather than a real 532 

improvement of important air-sea feedbacks for ENSO.  533 

Nonlinearity in feedbacks is usually not taken into account in theoretical approaches 534 

of ENSO representation in CGCMs (e.g. Jin et al 2006). The very diversely simulated 535 

shortwave feedback is characterized by a strong nonlinearity in observations: the shortwave 536 

feedback is generally negative for positive SST anomalies (convective regime) and positive 537 
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for negative SST anomalies (subsident regime). Most models are however perpetually locked 538 

in one of these regimes in the eastern equatorial Pacific. Only a third of the CMIP models can 539 

reproduce the observed regime shift and the change in α SW sign. There is a strong 540 

relationship between the modeled shortwave feedback nonlinearity and the ENSO amplitude. 541 

The models with the stronger nonlinearity in αSW are also the ones with stronger ENSO. It is 542 

possible that a larger variability of SST in Niño-3 favors the shift in atmospheric regime, but a 543 

large ENSO amplitude may as well be a consequence of this ability to switch from convective 544 

to subsident regime. Surprisingly, there is no strong evidence of a link between the αSW 545 

nonlinearity and ENSO asymmetry. However, the ability to switch to convective regime 546 

seasonally seems to be linked with the damping of SST anomalies in spring and thus with 547 

ENSO phase locking. 548 

Using the synthetic information encapsulated in a few simple ENSO performance 549 

metrics together with atmospheric feedbacks process-based metrics, it is possible to indicate 550 

models that produce a correct ENSO signal with a reasonable representation of underlying 551 

processes. This approach suggests that the FGOALSg2, GISS2E, CESM1-FASTCHEM, 552 

MIROC4h, CNRM-CM5, GFDL-ESM2-M, CCSM4 models from CMIP5 and CCCMAt63 553 

model from CMIP3 have both the best ENSO characteristics and the best atmospheric 554 

feedbacks. These models may be more reliable to study ENSO dynamics, and its sensitivity to 555 

external forcing. 556 

7.2 Discussion and perspectives 557 

Much development work for modeling group is still needed in order to correctly 558 

represent ENSO, its basic characteristics (amplitude, evolution, timescale, seasonal 559 

phaselock…) and fundamental processes such as the Bjerknes and surface fluxes feedbacks. 560 

The Bjerknes feedback is still strongly underestimated by most models. Marti et al (2010) 561 

suggested that the atmospheric horizontal resolution may have an impact in simulating the 562 
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Bjerknes feedback, but this still needs to be fully addressed. Furthermore, the zonal wind 563 

stress over Niño-4 is also sensitive to Niño-3 convective activity through Gill-type response 564 

(Gill 1980) and is thus sensitive to the AGCM convective scheme (e.g. Watanabe et al 2011). 565 

This provides interesting leads to work on the improvement of this fundamental ENSO 566 

process. 567 

The damping surface flux feedback also remains too diverse in CMIP5 models, in 568 

particular due to the difficulty to represent the shortwave feedback and its nonlinearity. There 569 

are moreover discrepancies between modeled and observed αSW
-
 and αSW

+
 (Fig. 8) that may 570 

arise from (i) a biased spatial distribution of convective and subsident regions within Niño-3, 571 

(ii) errors in clouds radiative forcing representation in models or (iii) wrong (weak) 572 

nonlinearity in the atmospheric dynamical response to SST variations in terms of large-scale 573 

vertical motions (Lloyd et al 2012). Lloyd et al (2012) led an analysis for individual CMIP3 574 

models in order to understand the origins of the discrepancies in modeled shortwave 575 

feedbacks. This can also be used for all CMIP5 models in order to provide a guideline for 576 

each model to work for a better representation of this important and complex damping term 577 

and its seasonal variations. 578 

 In order to better characterize the representation of ENSO in models and in particular to 579 

describe the full impact of the Bjerknes feedback on ENSO variability, a study of its 580 

interaction with the oceanic mean state and dynamics is needed. To diagnose the thermocline, 581 

the oceanic zonal advection and the Ekman pumping responses to anomalies of zonal wind 582 

stress is indeed decisive to work on the improvement of ENSO in climate models. The Jin et 583 

al (2006) BJ-index approach could be used to further analyze the simulation of ENSO 584 

processes in CMIP5. The BJ-index framework could be in addition a powerful tool to further 585 

investigate the importance of shortwave feedback nonlinearity on ENSO amplitude, still some 586 

work is needed in order to include such feedbacks nonlinearity in this simplified model. 587 
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Another implication of the relationship between shortwave feedback nonlinearity and ENSO 588 

amplitude (fig. 9) is that computing αSW over a few years may help give an indication on the 589 

modeled ENSO amplitude, otherwise diagnosed from multi-century simulations. The shift of 590 

regime from mostly subsident to convective may moreover play a role in the phase locking of 591 

ENSO in the seasonal cycle (Fig. 10). The type of shortwave feedback is also shown to be 592 

related to the mean state (Fig. 11). The results of this study show that improving ENSO, the 593 

seasonal cycle and the mean state of a model all come together, suggesting that errors in the 594 

simulation of these phenomena share the same origin.  595 

 Finally, many of the new CGCMs are simulating much more processes than they did in 596 

CMIP3: aerosol indirect effect, stratosphere/troposphere interactions, land ice, flowing rivers, 597 

carbon cycle, ecosystems, and forcing by emissions rather than concentrations. This makes 598 

simulating Earth’s climate more challenging by adding new potential feedbacks that can 599 

amplify biases, more uncertain model parameters to tune and more constraints when 600 

finalizing the model set up. In that sense, the fact that ENSO properties in CMIP5 are not 601 

degraded adds confidence in the modeling enterprise itself. This new generation of models 602 

hence holds promising new avenues for exploring the impacts of ENSO in Earth System 603 

Models.  604 
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Tables 763 
Table1. CMIP3 and CMIP5 official model names per modeling centers. The number of years 764 

of pre-industrial control run available for this study and the corresponding type of αSW (see 765 

§5) are also reported. The “-“ stands for model (or necessary data) not available. 766 

  CMIP3 CMIP5 

Modeling 

center 

number 

Modeling 

center 

Model Run 

length 

(years) 

αSW 

type 

Model Run 

length 

(years) 

 

αSW 

type 

1 BCC - - - BCC-CSM1 

 

500 SUB 

2 BCCR BCCR-BCM2.0 250 MIX - - - 

3 BNU - - - BNU-ESM 559 MIX 

4 CCCma CGCM3.1 (a) 

CGCM3.1-t63 (b) 

1000 

350 

CONV 

CONV 

CanESM2 

 

996 MIX 

5 CMCC - - - CMCC-CM 330 CONV 

6 CNRM-

CERFACS 

CNRM-CM3 500 MIX CNRM-CM5 

 

850 CONV 

7 CSIRO-

QCCCE 

CSIRO-Mk3.0 (a) 

CSIRO-Mk3.5 (b) 

380 

910 

MIX 

MIX 

CSIRO-Mk3.6 

 

500 SUB 

8 FIO - - - FIO-ESM 800 MIX 

9 GFDL GFDL2.0 (a) 

GFDL2.1 (b) 

500 

500 

MIX 

MIX 

GFDL-CM3 (a) 

GFDL-ESM2G (b) 

GFDL-ESM2M (c) 

500 

500 

500 

MIX 

SUB 

MIX 

10 GISS GISS-AOM (a) 

GISS-EH (b) 

GISS-ER (c) 

251 

400 

500 

CONV 

SUB 

CONV 

GISS-E2-H (a) 

GISS-E2-R (b) 

 

480 

300 

CONV 

CONV 

11 IAP (LASG & 

CESS) 

FGOALSg1.0 

 

350 MIX FGOALSg2 (a) 

FGOALSs2 (b) 

900 

501 

CONV 

SUB 

12 INGV INGV-ECHAM4 100 - - - - 

13 INM INM-CM3.0 

 

330 SUB INM-CM4 

 

500 SUB 

14 IPSL IPSL-CM4 

 

500 MIX IPSL-CM5A-LR (a) 

 IPSL-CM5A-MR (b) 

IPSL-CM5B-LR (c) 

1000 

300 

300 

SUB 

SUB 

MIX 

15 MIROC MIROC3.2 MR (a) 

MIROC3.2 HR (b) 

 

500 

100 

SUB 

CONV 

MIROC4h (a) 

MIROC5 (b) 

MIROC-ESM (c) 

MIROC-ESM-CHEM (d) 

 

100 

670 

531 

255 

CONV 

CONV 

SUB 

SUB 

16 MIUB ECHO-G 341 MIX - - - 

17 MOHC HadCM3 (a) 

HadGEM1 (b) 

342 

240 

SUB 

SUB 

HadGEM2-ES (a) 

HadGEM2-CC (b) 

240 

575 

SUB 

SUB 

18 MPI ECHAM5/MPI-

OM 

 

506 MIX MPI-ESM-LR (a) 

MPI-ESM-MR (b) 

MPI-ESM-P (c) 

1000 

1000 

1156 

SUB 

SUB 

SUB 

19 MRI MRI-CGCM2.3.2 

 

350 SUB MRI-CGCM3 500 SUB 

20 NCAR CCSM3.0 (a) 

NCAR-PCM1 (b) 

230 

500 

SUB 

SUB 

CCSM4 501 MIX 

21 NCC - - - NorESM1-M (a) 

NoeESM1-ME (b) 

501 

252 

MIX 

MIX 

22 NSF-DOE-

NCAR 

- - - CESM1-FASTCHEM (a) 

CESM1-WACCM (b) 

222 

 

200 

MIX 

 

MIX 

 767 
 768 
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Table 2. Average precipitation response to ENSO in Niño-4, Bjerknes feedbacks, ENSO 770 

seasonality metric (Fig. 3b) and the March-April-May shortwave feedback for SUB, MIX and 771 

CONV-type models. The standard deviation is given in parenthesis. 772 

 SUB-type MIX-type CONV-type 

Precip std. Dev. in Niño-4 

(mmh
-1

/C) 

1.2 (0.5) 2.2 (0.65) 1.63 (0.6) 

Bjerknes Feedback 

(10
-3

 Nm
-2

/C) 

6.2 (1.8) 7.3 (1.6) 9.1 (2.2) 

ENSO seasonality metric : 

Niño-3 SST std. Dev. 

(NDJ/MAM) 

1.08 (0.23) 1.21 (0.35) 1.28 (0.24) 

Average March-April-May 

shortwave feedback (αSW, in 

Wm
-2

/C) 

3.99 (3.91) -3.83 (4.13) -9.56 (5.97) 

  773 
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Figure Captions: 774 

Figure 1. ENSO metrics for pre-industrial control simulations - CMIP3 (blue) and CMIP5 775 

(red). (a) and (b) SSTA std. dev. in Niño-3 and Niño-4 (°C), (c) precipitation std dev. in Niño-776 

4 (mm/day), (d) RMS error of Niño-3 SSTA power spectrum , (°C
2
). Reference datasets, 777 

shown as black solid circles and dashed lines, are HadISST1.1 for (a), (b), (d) and CMAP for 778 

(c) The CMIP3 and CMIP5 multi-model mean are shown as squares on the left of each panel 779 

with the whiskers representing the inter-model standard deviation. 780 

 781 

Figure 2. ENSO spectral characteristics diagnosed from Niño-3 SST anomalies: (a) Examples 782 

of spectra with HadISST1.1 (green), two CMIP3 (blue) and CMIP5 (red) models peaking 783 

respectively in the 1-3 year band and the 3-8 band (vertical dashed black lines locate 1, 3 and 784 

8 years) and (b) spectral shape metric defined as the ratio between the power in the 3-8 years 785 

band and in the 1-3 years band for HadISST1.1 (black), CMIP5 models (light red) and CMIP3 786 

models (light blue), the squares represent the corresponding average with whiskers 787 

representing the inter-model standard deviation. 788 

 789 

Figure 3. ENSO seasonality diagnosed from Niño-3 SST anomalies: (a) Monthly average 790 

standard deviation of the SST anomalies (°C) and (b) Seasonality metrics defined as the ratio 791 

between the November-January (NDJ) and the March-May (MAM) average standard 792 

deviation of the SST anomalies for HadISST1.1 (black), CMIP5 models (light red) and 793 

CMIP3 models (light blue), the squares represent the corresponding average with whiskers 794 

representing the inter-model standard deviation. 795 

 796 

Figure 4. Percentage of occurrence of maximum SST anomaly in the western (150°E-170°W, 797 

5°S-5°N), central (170°W-130°W, 5°S-5°N) and eastern (130°W-90°W, 5°S-5°N) Pacific 798 
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Ocean for El Niño (a-d) and La Niña (e-g) events during there onset phase (a and d), peak 799 

phase (b and e) and termination phase (c and f) for the observations (black) and CMIP3 (blue) 800 

and CMIP5 ensembles averages (red) and standard deviation among the models (whiskers), 801 

(g) As (b) but for all individual models. 802 

 803 

Figure 5. ENSO mean tropical Pacific metrics for pre-industrial control simulations - CMIP3 804 

(blue) and CMIP5 (red). (a) SST RMS error in tropical Pacific (in °C), (b) SST annual cycle 805 

amplitude in Niño-3 (in °C), (c) zonal wind stress spatial RMS error over equatorial Pacific 806 

(5°N-5°S; in 10
−3

Nm
−2

), (d) precipitation spatial RMS error over tropical Indo-Pacific (30°N-807 

30°S, in mm/day), (e) net surface heat flux RMS error in Niño-3 (W.m
−2

). Reference datasets, 808 

shown as black solid circles and dashed lines, are HadISST1.1 for (a) and (b); ERA40 for (c); 809 

CMAP for (d); and OAFlux for (e). See models and centers legend in Fig. 1 and Table 1. The 810 

CMIP3 and CMIP5 multi-model mean are shown as squares on the left of each panel with the 811 

whiskers representing the model standard deviation. 812 

 813 

Figure 6. Average (a) SST (K) and (b) zonal surface wind stress (Nm
-2

) at the equator (5°S-814 

5°N) in the Pacific Ocean for ERA-40 (black) and CMIP3 (blue) and CMIP5 (red) ensemble 815 

mean. The inter model standard deviation is shaded in light color.  816 

 817 

Figure 7. Atmosphere feedbacks during ENSO for pre-industrial control simulations - CMIP3 818 

(blue) and CMIP5 (red). (a) Bjerknes feedback, computed as the regression of Niño 4 wind 819 

stress over Niño3 SST (10
-3 

N.m
−2

.°C
-1

); (b) heat flux feedback, computed as the regression of 820 

total heat flux over SST in Niño3 (W.m
-2

.°C
-1

); (c) Shortwave component of (b); (d) Latent 821 

heat flux component of (b). Reference datasets, shown as black solid circles and dashed lines, 822 

are ERA40 for (a) and OAFlux for (b), (c) and (d). See models and centers legend in Fig. 1 823 
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and Table 1. The CMIP3 and CMIP5 multi-model mean are shown as squares on the left of 824 

each panel with the whiskers representing the model standard deviation. 825 

 826 

Figure 8. Shortwave monthly anomalies in Niño3 as a function of SST monthly anomalies in 827 

Niño3 for (a) IPSL-CM5A-MR (dots) and segmented linear fits (blue), (b) Reference data 828 

(green dots, HadISST and OAFlux for 1984-1999) and FIOESM (gray dots) and 829 

corresponding segmented linear fits (green and black lines), and (c) MIROC5 (dots) and 830 

segmented linear fits (red). (d), (e) and (f) show the segmented linear fits for the CMIP3 and 831 

CMIP5 models according to their types: (d) SUB-type: αSW always positive, (e) MIX-type: 832 

αSW changing sign and (f) CONV-type: αSW always negative. 833 

 834 

Figure 9. Scatterplot of Niño-3 SST anomalies standard deviation as a function of 835 

nonlinearity in alpha shortwave feedback. The colors represents the type of alpha SW. alpha 836 

SW nonlinearity is quantified by taking aSW
-
 - aSW

+
. The green square is the reference 837 

(HadISST and OAFlux on 1984-1999). 838 

 839 

Figure 10. Average monthly (a) shortwave feedback (Wm
-2

.°C
-1

), and (b) scatterplot of the 840 

seasonality metric against March-April-May average shortwave feedback for corresponding 841 

reference datasets (green), SUB-type models (blue), MIX-type models (black) and CONV-842 

type models (red). The inter model standard deviation is plotted in light color. 843 

 844 

Figure 11. Average (a) SST (°C) and (b) zonal surface wind stress (N.m
-2

) at the equator 845 

(5°S-5°N) in the Pacific Ocean for ERA-40 (green) and SUB-type models (blue), MIX-type 846 

models (black) and CONV-type models (red) ensemble mean. The inter model standard 847 

deviation for each model type is plotted in light color. 848 
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 849 

Figure 12. Scatterplots of nonlinearity in shortwave feedback as a function of the difference 850 

between each model and Reynolds (REF) of (a) the average SST in the equatorial Pacific 851 

Ocean (180°E-240°E, 5°S-5°N) and (b) the average zonal SST gradient between (160°E-852 

200°E, 5°S-5°N) and (220°E-240°E, 5°S-5°N). The colors refer the type of the models (blue) 853 

SUB-type, (black) MIX-type and (red) CONV-type.  854 

 855 

Figure 13. ENSO simulation performances for each model of CMIP3 (upper) and CMIP5 856 

(lower) designated by the name of the modeling group and a letter (see table 1 and figure 1). 857 

Four primary scores are used to depict the ENSO quality: the normalized error ( cf. (1), no 858 

unit, a zero value indicating a perfect agreement with observations for that measure) of the 859 

SSTA std. dev. in Niño-3 (Amplitude), of the percentage of El Niño peak in eastern Pacific 860 

(Structure), of the ratio between power in 3-8 years over 1-3 years (Spectrum) and of the ratio 861 

of average SSTA standard deviation in Niño-3 in NDJ over MAM (Seasonality). The ENSO 862 

score is then defined as the average of these primary scores. Thus, the lower the ENSO score, 863 

the better the model represents the basic characteristics of ENSO. Four primary scores depict 864 

the atmosphere feedbacks and consist in the normalized error of μ, α and its shortwave and 865 

latent heat components. The overall Feedback score (FB SCORE) is the average of these 866 

scores. The grey squares spot the metrics that could not be calculated because of the lack of 867 

data. The corresponding score is not computed for these models. 868 

 869 

Figure 14. Scatterplots of ENSO score versus Feedback score (see Fig. 13) for each CMIP5 870 

(large labels) and CMIP3 (small labels) model. The color refers to the type of the model: 871 

CONV (red), MIX (black) and SUB (blue). “c3” is added to the model name for CMIP3 872 

models. 873 
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