A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

KNMI, Royal Netherlands Meteorological Institute
TUD, Delft University of Technology

EUCLIPSE/CFMIP meeting - MPI Hamburg
12 June 2013
Stratocumulus clouds

Scientific questions:
1. What are the stratocumulus steady-states for a wide range of different atmospheric conditions?
2. How are the steady-states affected by perturbations of large scale forcings?
Stratocumulus clouds

Scientific questions:

1. What are the stratocumulus steady-states for a wide range of different atmospheric conditions?
2. How are the steady-states affected by perturbations of large scale forcings?
Experiment set-up

\[w_0 \left(1 - e^{-\frac{z}{z_w}}\right) \]

SST = 19°C
Experiment set-up

$$w_0 \left(1 - e^{-\frac{z}{z_w}}\right)$$

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem
A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Experiment set-up

\[w_0 \left(1 - e^{-\frac{z}{z_w}}\right) \]

\[\text{SST} = 19^\circ\text{C} \]
Experiment set-up

\[w_0 \left(1 - e^{-\frac{z}{z_w}}\right) \]

SST = 19°C

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem
A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Experiment set-up
Experiment set-up

\[LTS = \theta(z = 3000m) - \theta_0 \]

\[\Delta q_t = q_t(z = 3000m) - q_{t0} \]

\[w_0 \left(1 - e^{-\frac{z}{z_w}}\right) \]

\[\Delta F_R(q_t) \]

SST = 19°C

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Experiment set-up

Decoupling: entrainment efficiency (Zhang et al., 2005)
ABL thermodynamic state

MLM + Nicholls and Turton (1986) entrainment parameterization
ABL thermodynamic state

MLM + Nicholls and Turton (1986) entrainment parameterization

\[\begin{align*}
\theta_{\text{ML}} & \rightarrow w_e \rightarrow \theta_{I,\text{ML}} \\
|\Delta q_t| & \rightarrow \Delta F_R \rightarrow \theta_{I,\text{ML}}
\end{align*} \]
ABL thermodynamic state

MLM + Nicholls and Turton (1986) entrainment parameterization

\[\text{LTS} \uparrow \rightarrow w_e \downarrow \rightarrow \theta_{I,ML} \downarrow, \]

\[\left| \Delta q_t \right| \uparrow \rightarrow \Delta F_R \uparrow \rightarrow \theta_{I,ML} \downarrow \]
ABL thermodynamic state

MLM + Nicholls and Turton (1986) entrainment parameterization

\[\Delta q_t \uparrow \rightarrow \Delta F_R \uparrow \rightarrow \theta_{I,ML} \downarrow \]

\[\text{LTS} \uparrow \rightarrow w_e \downarrow \rightarrow \theta_{I,ML} \downarrow \]

\[|\Delta q_t| \uparrow \rightarrow q_{t,ML} \downarrow \]
Cloud base and top height

MLM + Nicholls and Turton (1986) entrainment parameterization

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Cloud base and top height

MLM + Nicholls and Turton (1986) entrainment parameterization

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Cloud base and top height

MLM + Nicholls and Turton (1986) entrainment parameterization

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Liquid water path (LWP)

MLM + Nicholls and Turton (1986) entrainment parameterization

\[\text{LTS} \uparrow \implies z_i \downarrow \text{ and } z_b \downarrow \implies \text{LWP} \downarrow \]

\[|\Delta q_t| \uparrow \implies z_i \uparrow \text{ and } z_b \uparrow \implies \text{LWP} \downarrow \]
Perturbed climate set-up

\[w_0 \left(1 - e^{-\frac{z}{z_w}} \right) \]

\[\Delta F_R(q_t) \]
Response to a climate perturbation

\[
\frac{d\text{LWP}}{d\text{SST}} = \frac{\text{LWP}\big|_{PC} - \text{LWP}\big|_{CTL}}{\text{SST}\big|_{PC} - \text{SST}\big|_{CTL}}
\]

- cloud thinning;
- increasing of decoupling;

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Response to a climate perturbation

\[\frac{dLWP}{dSST} = \frac{LWP|_{PC} - LWP|_{CTL}}{SST|_{PC} - SST|_{CTL}} \]

- cloud thinning;
- increasing of decoupling;

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Response to a climate perturbation

\[
\frac{dLWP}{dSST} = \frac{LWP|_{PC} - LWP|_{CTL}}{SST|_{PC} - SST|_{CTL}}
\]

dLWP/dSST (g/m²/K)

- Cloud thinning;
- Increasing of decoupling;

→ in line with LES results (Bretherton et al., 2013).

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
MLM interpretation of cloud-climate feedback

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
Summary

Control climate

What are the stratocumulus steady-states for a wide range of different atmospheric conditions?

- LTS $\uparrow \implies z_i \downarrow$ and $z_b \downarrow \implies \text{LWP} \downarrow$;
- $|\Delta q_t| \uparrow \implies z_i \uparrow$ and $z_b \uparrow \implies \text{LWP} \uparrow$.
Summary

Control climate

What are the stratocumulus steady-states for a wide range of different atmospheric conditions?

- **LTS** ↑ \(\Rightarrow\) \(z_i\) ↓ and \(z_b\) ↓ \(\Rightarrow\) **LWP** ↓;
- \(|\Delta q_t|\) ↑ \(\Rightarrow\) \(z_i\) ↑ and \(z_b\) ↑ \(\Rightarrow\) **LWP** ↑.

Perturbed climate

How are the steady-states affected by perturbations of large scale forcing?

- net effect: cloud thinning and increase of decoupling;
- **SST (LTS and RH are conserved)** ↑ \(\Rightarrow\) \(\Delta F_R\) ↓ \(\Rightarrow\) \(w_e\) ↓ \(\Rightarrow\)
 \(z_i\) ↓ but \(z_b\) ↑ \(\Rightarrow\) **LWP** ↓.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Framework description</th>
<th>Control climate</th>
<th>Perturbed climate</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Thank you!
The effect of entrainment parametrization

Lock, 1998

Stage and Businger, 1981

Stevens 2006

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
The effect of entrainment parametrization

S. Dal Gesso, A.P. Siebesma, S.R. de Roode, J.M. van Wessem

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate
LW radiative cooling

A Mixed-Layer Model perspective on stratocumulus steady states in a perturbed climate