Using a Multi-Physics Ensemble for Exploring Diversity in Cloud-Shortwave Feedback in GCMs

Masahiro Watanabe
Atmosphere & Ocean Research Institute
University of Tokyo
hiro@aori.u-tokyo.ac.jp

Collaborators:
M. Yoshimori, Y. Kamae, M. Kimoto (AORI, Univ of Tokyo),
H. Shiogama, T. Yokohata, T. Ogura, S. Emori (NIES),
J. D. Annan, J. C. Haargreaves (JAMSTEC)
Did climate sensitivity get converged in CMIP5?

Equilibrium climate sensitivity (ECS) to $2\times CO_2$ in CMIP models

<table>
<thead>
<tr>
<th>IPCC report</th>
<th>FAR</th>
<th>SAR</th>
<th>TAR</th>
<th>AR4</th>
<th>AR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>climate sensitivity</td>
<td>1.5-4.5K</td>
<td>1.0-3.5K</td>
<td>1.5-4.5K</td>
<td>2.1-4.4K</td>
<td>2-4.6K* as of Oct 2011</td>
</tr>
</tbody>
</table>

*as of Oct 2011

Mitchell et al. (1990), Kattenberg et al. (1996), Cubasch et al. (2001), IPCC (2007)

Change in cloud-shortwave flux

<table>
<thead>
<tr>
<th>Model</th>
<th>Change in SAT</th>
<th>Change in cloud-shortwave flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>CanESM2</td>
<td>Positive cloud feedback</td>
<td>Negative cloud feedback</td>
</tr>
<tr>
<td>CNRM CM5</td>
<td>Positive cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>CSIRO Mk3.6</td>
<td>Positive cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>HadGEM2 ES</td>
<td>Positive cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>INM CM4S</td>
<td>Neutral cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>IPSL CM5A-LR</td>
<td>Positive cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>MIROC5</td>
<td>Negative cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>MRI CGCM3</td>
<td>Neutral cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
<tr>
<td>NorESM1</td>
<td>Neutral cloud feedback</td>
<td>Neutral cloud feedback</td>
</tr>
</tbody>
</table>

Courtesy of K Taylor
Filling the gap between two PPEs

Replacing one or more schemes in MIROC5 with old ones:

- Std (=MIROC5)
- (old)CLD
- (old)CNV
- (old)VDF
- (old)CLD+CNV
- (old)CNV+VDF
- (old)CLD+VDF
- (old)CLD+CNV+VDF

~ MIROC3

- Structural difference > Parametric difference
- Any strategy to link them?

Watanabe et al. (2012, JC)
Filling the gap between two PPEs

Replacing one or more schemes in MIROC5 with old ones:

- Std (=MIROC5)
- (old)CLD
- (old)CNV
- (old)VDF
- (old)CLD+CNV
- (old)CNV+VDF
- (old)CLD+VDF
- (old)CLD+CNV+VDF

Structural difference > Parametric difference

Any strategy to link them?

Watanabe et al. (2012, JC)
Coupling processes making differences

Feedback occurs thru the interaction of a suite of parameterized processes rather than from any single process’ (Zhang & Bretherton 2008)

MIROC MPE:
For each of 8 models,
✓ 6y CTL
✓ 6y 4xCO2
✓ 6y +SST (from CGCM) runs are performed w/ AGCM
After slight re-tuning

Processes are nonlinear, e.g.,

CLD -> Small impact
VDF -> Small impact
CLD+VDF -> Large impact !!
Robust positive feedback for the tropical subsidence regimes (at least in MIROC3/5)

Large difference for the weak convective regime

Trade cumulus response?

Watanabe et al. (2012)
Cloud regimes

Circulation regime sorted by ω

Altitude (model's hybrid coordinate)

High cloud
Middle cloud
Low cloud

C, STD
Cloud diagnosis

Cloud fraction is a function of grid-scale saturation excess, Q_c, and PDF moments, μ_i:

$$C = f \left(Q_c, \mu_i \right)$$

$$Q_c = a_L \left\{ q_t - q_s (T_l, p) \right\}$$

$$a_L = \left(1 + L\alpha_L / c_p \right)^{-1}$$

$$\alpha_L = \partial q_s / \partial T \bigg|_{T=T_l}$$

Change in +SST run (Δ) can be decomposed into 4 terms (overbar is the mean value in CTL)

$$\Delta Q_c = a_L \left(\Delta q_t - \Delta q_s \right) + \Delta a_L \left(\bar{q}_t - \bar{q}_s \right)$$

$$= a_L \left[(\bar{H} - 1)\alpha_L \Delta T + \Delta H\bar{q}_s + \left\{ 1 - (\bar{H} - 1)\alpha_L L_e^{-1} \right\} \Delta q_l \right] + \Delta a_L \left(\bar{q}_t - \bar{q}_s \right)$$

- Temperature effect
- RH effect
- Condensate effect
- CC effect
Sources of Qc change

In the middle troposphere of the convective regime, temp. effect (-) cancels the CC effect (+), with the net being weakly negative.

In the low level, positive RH effect due to slight increase in RH (~2%) is crucial.

\[\Delta H \approx \left(\Delta q \bar{q}_s - \bar{q} \Delta q_s \right) / \bar{q}_s^2 \]

Positive \(\Delta H \) comes from positive \(\Delta q \), which is attributed to more active turbulence transport at \(\eta > 0.8 \).

Negative \(\Delta H \) is due to positive \(\Delta q_s \), which results from a drying by larger \(\Delta T \) than the effect of enhanced transport of \(q \).
Cloud regimes

ΔQ_c is similar among models

$
\bar{Q}_c \text{ & } \partial C / \partial Q_c \text{ are very different}
$

ΔC,

increase

decrease

no response

Cloud fraction at $\eta = 0.85$
Given *two* base models showing different cloud feedbacks, MPE can be a useful approach to understand sources of the different behaviour.

In MIROC MPE, no single process controls ΔSW_{cld}, but the coupling of two processes does:
- cloud and turbulence schemes
- convection and cloud schemes

Change in the saturation excess has a similar structure among the models, but difference in the mean and sensitivity may cause an opposite response of low clouds.