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Response of European heat waves in CMIP5    

RCP scenarios from 19 models 
Schoetter et al. (to be submitted) 
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Motivations 

 Uncertainties in regional temperature change are even stronger 
than in global warming (e.g. Cattiaux et al. 2013); 

 Changes in extreme temperature events are strongly related to 
seasonal mean regional temperature changes (e.g. Peings et al. 
2013, Schoetter et al., submitted); 

 A regional and seasonal approach might be more effective 
for constraining climate change (e.g. Hall and Qu 2006) given 
the spatial heterogeneity of (i) model biases, (ii) non-GHG 
radiative forcings and (iii) internal climate variability; 

 Besides radiative feedbacks, changes in summer land surface 
temperature are also controlled by surface heat fluxes (e.g. 
Seneviratne et al. 2013). 
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A North American case study 

 Large inter-model spread 
in both the biases and 
anomalies of summer 
near-surface temperatures 

 North America is a « hot 
spot » for land-atmosphere 
coupling (e.g. Koster et al. 
2006) 

Projected JJAS T2M anomalies 
2071-2100 (RCP8.5 ) vs 1979-2008 

(Douville et al., in preparation) 
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Data (Focus on JJAS mean climate) 

 

 15 CMIP5 models: AMIP & Historical (1979-2008), RCP8.5 (2071-2100) 
and 1%CO2 (yrs 19-48 & 111-140) simulations 

 1 realization per model but internal climate variability is estimated using 5 
members of CNRM-CM5 (Historical and RCP8.5) 

 Gridded observations & reanalyses: T2M (CRU_TS3), CRFSW (CERES & 
SRB), EF=LE/(LE+H) (MTE Jung et al. 2009 & ERAI), RH2M (NCEP2) and 
SMI (normalized Soil Moisture Index, ERAI-Land Balsamo et al. 2013) 

 3 sets of metrics: climatology, interannual variability (correlations based on  
detrended seasonal anomalies), and recent trends (1979-2012 linear fits) 

 Poor man’s constraint: exclude the least realistic model out of the 15 
independent models for each metric showing a significant (p-value < 5% => 
R>0.51) statistical link with the projected temperature anomalies  
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Scatterplots of climatologies: AMIP & HIST 

Symbols are 
filled with 
colors that 
denote the 

spatial 
correlation 
(inside the 
domain) 
between      
X and Y 

 Large errors in both cloud and land surface processes contribute 
to summer temperature biases (even more obvious in CMIP) 
 Temperature biases are generally stronger in AMIP than in CMIP 
 « Observed » SW CRE and EF are very uncertain 
 What is the main driver of temperature biases? 



T2M biases in the CNRM AGCM 

 4 AMIP simulations: 
- ARPv5 (old physics) 
- ARPv5 with improved 
(MODIS) surface albedo 
- ARPv6 (new physics) 
- ARPv6 nudged towards 
ERA-Interim dynamics 
 Increased precipitation 
intensity in ARPv6 leads to 
stronger runoff, lower 
evapotranspiration and 
higher JJAS temperature 
+ dynamical amplification 
due to a thermal low effect 

Latent 
heat 

Runoff 

SW 
CRE 
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Scatterplots of anomalies: 1%CO2 & RCP8.5 

 Both SW CRE and EF also seem to contribute to the inter-model 
spread in temperature anomalies (note that models disagree about 
the sign of the EF response) 
 The statistical links are robust: (i) statistically significant (p-value < 
5%), (ii) found in both RCP8.5 scenarios and 1%CO2 experiments 
and (iii) consistent with the spatial variability of T2M anomalies within 
most CMIP5 models 
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Biases vs anomalies: 1%CO2 & RCP8.5 

 Robust links with 
both cloud and land 
surface processes 
 Consistent between 
RCP8.5 & 1%CO2 
 One realization per 
model is enough 

Stegehuis 
et al. 2013 
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R(X,Y) vs anomalies: 1%CO2 & RCP8.5 

Boé and 
Terray 2014 

 Interannual correlations are robust metrics (1 realization per 
model is enough) but (not surprisingly) they do not necessarily 
represent strong constraints on projected summer temperatures 
 Yet, they are useful to detect « unusual behaviours » (e.g. GISS 
that show a too weak influence of SW CRE on T2M and a wrong-
sign correlation between soil moisture and EF). 
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Trends vs anomalies: 1%CO2 & RCP8.5 

 Recent linear trends in T2M show 
significant correlations with projected 
T2M anomalies and HadGEM2ES is 
a possible outlier for two reasons:  
(i) A strong and disputed (e.g. 
Alkama et al. 2011) CO2 stomatal 
closure effect on plant transpiration 
(ii) A strong and disputed (e.g. Zhang 
et al. 2013) indirect aerosol effect 
 Both effects are more easily 
detected (and falsified) at the 
regional scale but are probably also 
important at the global scale 
 One realization per model might 
however not be enough Observed trend not 

much affected by the 
global warming hiatus 
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Constraining projections by removing « outliers »  

 4 out of the 15 CMIP5 
models are potential outliers 
 Removing outliers leads 
to a substantial reduction of 
the inter-model spread (that 
here includes the uncertainty 
due to internal variability) 
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Global vs regional emergent constraints? 

 Constraining the global 
warming would be extremely 
useful to constrain regional 
climate changes but seems to 
be very difficult 
 Constraining the regional 
warming might be easier and 
would be also very useful to 
constrain the global warming 
 NB: We only have one 
globe to constrain regional 
warming but we have multiple 
regions to constrain global 
warming  
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Conclusions 

 Biases / uncertainties in present-day / future summer temperature 
over North America (as well as over Europe) are due to the poor 
simulation of both cloud and land surface processes; 

 Constraining regional and seasonal mean temperature changes 
is feasible… but using multiple and physically-based metrics 
(rather than a single magical index); 

 Assessing the models ability to simulate trends that cannot be 
explained by internal climate variability (D&A) will provide more 
and more efficient metrics. 
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Implications 

 Running global off-line land surface simulations (e.g. GSWP) driven by 
observed atmospheric forcings and CO2 concentrations would be useful 
for understanding the role of land surface biases and feedbacks in CMIP 
models (cf. H2020 IMPULSE);  

 Improving a sustainable (but not necessarily global) observing system is 
as important as improving the climate models for narrowing uncertainties 
in climate projections; 

 Having multiple (5?) members in the forthcoming CMIP-DECK 
experiments (at least for the historical simulations) would be useful to 
distinguish between model uncertainty and internal variability and for the 
development of robust emergent constraints. 
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Prospects: Looking at two « canonical » regions? 
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Climatol. vs anomalies: 1%CO2 & RCP8.5 

 Outliers: CSIRO 
(& MIROC?) 

models 
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R(X,Y) vs anomalies: 1%CO2 & RCP8.5 

 Outliers: 
MIROC (and 

GISS?) models 
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Trends vs anomalies: 1%CO2 & RCP8.5 

 Outlier: 
CCCMA (and 

IPSL?) models 
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Prospects: Looking at other regions? 
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T2M (left) & CRFSW (right) biases: HIST 

Obs 

MME 
mean 
bias 

MME 
bias 
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Obs 

MME 
mean 
bias 

MME 
bias 

stdev 

T2M (left) & CRFSW (right) biases: AMIP 
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Trends vs anomalies: 1%CO2 & RCP8.5 

 Recent linear trends in T2M show significant correlations with 
projected T2M anomalies (especially in RCP8.5) and HadGEM2ES 
(with a strong indirect aerosol effect and a strong CO2 physiological 
effect on surface evapotranspiration) appears as an outlier 
 Also true for CRFSW and EF in 1%CO2 experiments (less clear in 
RCP8.5 due to model-dependent radiative effects of anthropogenic 
aerosols) but large uncertainties in both « observed » and simulated 
trends (one realization per model is not necessarily enough) 
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Scatterplots of anomalies: 1%CO2 & RCP8.5 

 Both SW CRE 
and EF contribute 
to the inter-model 
spread of T2m 
anomalies 
 The statistical 
links are robust 
(i.e. statistically 
significant and 
found in both 
RCP8.5 and 
1%CO2 expts) 
 Also true for 
scaled anomalies 
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Effect of scaling on the intermodel spread 
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RCP8.5 
scenarios 
from 33 
models 

Cattiaux et al. 
2013 

MME mean MME stdev Spatial average for each model 

JJAS warming over Europe in CMIP5 

Inter-model spread in European warming as a function of… 
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Seasonal dynamics of T2M biases 

 The MME warm bias 
appears in June, in line 
with a lack of SW cloud 
radiative cooling 
 It is then amplified by 
an underestimation of the 
evaporative fraction 
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