

LES OF RESPONSE OF STRATOCUMULUS CLOUDS TO A CLIMATE PERTURBATION

Johan van der Dussen | Sara Dal Gesso | Stephan de Roode | Pier Siebesma

Motivation

CGILS response to perturbed climate using LES

How will stratocumulus clouds change in a future climate?

Case setup

Bulk humidity and potential temperature difference

Simulation details

Model	DALES 4
number of simulations	25 (x2)
simulation time	10 days
domain size	6 x 6 x 3 km ³
Δz	10 m
$\Delta x = \Delta y$	50 m
N_z	219
$N_x = N_y$	120

1. Control Climate

Results - control

Inversion height

Cloud cover is 100% everywhere

Results - control

Liquid water path

8

TUDelft

Results

LWP mostly depends on free tropospheric humidity

2. Perturbed climate

Climate perturbation

Temperature increase at constant relative humidity

|Δ*Q*| increases by up to 1.4 g kg⁻¹!

Response to perturbation

Inversion height increases

TUDelft

Two competing processes

- increased surface flux: $z_i \uparrow$
- increased downwelling longwave radiative flux: $z_i \downarrow$

Cloud cover remains 100% everywhere

Response to perturbation

LWP response partly related to change of ΔQ

Response to perturbation

Relative humidity decreases

Conclusions

- Climate feedback is positive for all cases
- LWP response mainly result of by change of ΔQ
- Cloud thinning response mainly due to drying of cloud layer

LES OF RESPONSE OF STRATOCUMULUS CLOUDS TO A CLIMATE PERTURBATION

Johan van der Dussen | Sara Dal Gesso | Stephan de Roode | Pier Siebesma

Inversion jumps

Mean state profiles

TUDelft

Turbulence state profiles

Climate response

Climate response – source/sinks

Entrainment-liquid flux adjustment

TUDelft