Links with GASS

GASS Co-Chairs:
Jon Petch and Stephen Klein

A community who carry out and use observations, process studies and model experiments with a focused goal of improving the representation of the atmosphere in weather and climate models.

Working with many model types bringing together observations, modelling and understanding in intercomparison projects

Topics of Current Projects (partial list)

Tropical convection (MJO)

Convection in the grey-zone (1-5 km)

Land-Atmosphere Interactions (DICE)

Stable boundary layers (GABLS)

Cloud microphysics and aerosol interactions

Boundary layer cloud feedbacks (CGILS)

Polar clouds (ISDAC)

CAUSES for US warm bias

Weak-Temperature Gradient modeling of tropical convection

GASS Projects: Topical Areas

- 1. Tropical Convection
- 2. The Grey-Zone Project
- 3. Land-Atmosphere Interactions
- 4. Ice & Mixed-Phase Cloud Microphysics
- 5. Ideas for projects that could link with CFMIP

Tropical Convection

- MJO Model Evaluation Project (finishing)
 - Leads: Jon Petch, Duane Waliser, Prince Xavier, Nick Klingaman, Xianan Jiang & Steve Woolnough
 - Joint with CLIVAR
 - Global model evaluation of MJOs in both free-running and initialized simulations, also some CRM runs
- CINDY/DYNAMO (discussion phase)
 - To utilize Indian Ocean field campaign observations (fall 2011)
- Weak-Temperature Gradient Modeling (starting)
 - Leads: Steve Woolnough, Chimene Daleu, Adam Sobel, Sharon Sessions, Gilles Bellon, Shugang Wang
 - Joint with WGCM/Euclipse
 - What are the strengths and weaknesses of the various ways (WTG, Damped Gravity Waves) that large-scale dynamics can be represented?

Grey-Zone Project (early)

Pier Siebesma (KNMI) et al.

Motivation

- Increased use of atmospheric models (e.g. NWP or mesoscale) with horizontal resolution in the grey-zone (1 – 10 km)
- Because these models cannot resolve all individual convective elements, there is a need to systematically evaluate their behaviors by comparison to benchmark large-domain Large-Eddy Simulations
- The project aims to guide the development of scaleaware and stochastic parameterizations to treat the mixing that needs to be parameterized

Liquid Water Path from LES (at 4 times showing the transition in scale)

Case Setup and Participation

- Cold-air outbreak case from the North Atlantic (CONSTRAIN) with quick transition from small closed cells to open cells
- Mix of models: LES, mesoscale, and global models
- Benchmark LES simulation: 100 km domain at 100 m resolution

<u>Land – Atmosphere Interactions</u>

- Dlurnal Land-atmosphere Coupling Experiment (DICE) (ongoing)
 - Leads: Adrian Lock and Martin Best (Joint with GLASS)
 - Run Single-Column Models of atmosphere and land separately with observations, then with the forcings of the other component model (e.g. atmopshere with land, land with atmosphere)
 - Evaluate land and atmosphere model performance with observations
 - What is the impact of coupling?
- Clouds Above the United States and Errors at the Surface (CAUSES) (formation)
 - Leads: Cyril Morcrette, Hsi-Yen Ma, Jon Petch, Shaocheng Xie
 - What is the role of errors in radiation and precipitation on the development of 2 meter temperature warm biases over summertime middle-latitude continents?
 - Hindcast evaluation of global and regional models with observations

Ice & Mixed-Phase Cloud Microphysics

- Indirect and Semi-Direct Aerosol Campaign (finished)
 - Lead: Mikhail Ovtchinnikov
 - LES of an Arctic mixed-phase cloud observed by ARM
 - Using bin microphysics to critique the effects of assumed ice size distribution in bulk schemes on deposition and sedimentation
- Mid-Latitude Cirrus (early)
 - Leads: Andreas Muhlbauer, Tom Ackerman
 - Evaluation with ARM aircraft observations of Oklahoma cirrus
 - What is contribution of small ice crystals in cirrus and the role of homogeneous and heterogeneous ice nucleation?
- Arctic Idealized Mixed-Phase Cloud Formation (formation)
 - Leads: Felix Pithan, Gunilla Svensson
 - SCM study under Idealized radiative cooling of a boundary layer air

Ideas for GASS links with CFMIP

- CGILS Phase 3?
- Radiative Forcing Model Intercomparison Project (RFMIP) (Robert Pincus)
 - Lead: Robert Pincus
 - Assessment at global scales of radiation parameterizations of various forcing agents (e.g. 4XCO₂)
- Radiative convective equilibrium ???
- Assessment of Water Cycle in 10 km global models (Graeme Stephens) ???
- Isotopes in Deep Convection ???
- Your ideas ...

Vertical Structure and Diabatic Processes of the Madden-Julian Oscillation: A Global Model Evaluation Project

Objectives

- Characterize observed and modelled temperature, moisture, and cloud structures during the MJO life cycle and determine the roles of various heating, moistening and momentum mixing processes.
- Evaluate the ability of current models to hindcast MJO events, and characterize the evolution of the "error" growth in the profiles of moistening, diabatic heating, etc.
- Elucidate key model deficiencies in depicting the MJO physical process evolution, and provide guidance to model development/improvement efforts.

Results

- A wide range of behaviours (some good/some bad) across models in all components
- Good hindcast of MJO does not imply a good climate MJO and vice-versa
- No clear relationships between MJO skill and representation of diabatic processes <u>however</u> all 3 components appear to show that moistening at low and mid-levels due to the transition phase seems to be a necessary but not sufficient condition for good MJO simulation

Experiment Types	No. Models	
20 year climate simulation (1991-2010)	20	
2 day hindcasts YoTC MJO cases E&F	7	
20 day hindcasts YoYC MJO cases E&F	11	

MJO Phase Diagrams for Hindcasts

Future Work

 Examination of CINDY/DYNAMO 2011 field campaign

Dlurnal Land-Atmosphere Coupling Experiment

(DICE)

M. J. Best (UKMO) and A. P. Lock (UKMO)

Overview

- Joint GLASSS/GASS activity bringing together land and boundary layer modeling communities together
- Case study focused on of 3 consecutive diurnal cycles with no clouds from CASES 99 (Kansas) (prior GABLS case)

Motivation and Questions

- Intercomparison study involving single columns models (SCM) of the atmosphere and land-surface model (LSM)
- **Stage 1**: Evaluate LSM and SCM standalone performance against observations
- **Stage 2:** What is the impact of coupling?
- Stage 3: How sensitive are different LSM and SCM to variations in forcing and why are some models more sensitive than others?

Preliminary Results

- Climatological vegetation leads to large errors in simulated evaporation overwhelming any signal resulting from coupling
- Case being modified to control for this factor
- Still there are some interesting differences in models' sensitivity to changes in forcing that are likely to be important in GCMs and need to be understood

Microphysics of Arctic Mixed-Phase Clouds: ISDAC LES Intercomparison

Mikhail Ovchinnikov (PNNL)

Case setup

- Based on observations from ARM observations for the Indirect and Semi-Direct Aerosol Campaign (ISDAC) at Barrow, Alaska
- The sensitivity to ice particle properties is examined in 11 models all with the same radiation scheme, and domain size

Key findings

- Confirmed first order importance of predicting correct liquid phase cloud (challenging for GCMs in the Arctic) and ice number concentration (always challenging).
- Constrained setup revealed the importance of ice size distribution
- Exponential ice size spectrum (a common default assumption in bulk Schemes) is too broad and can underestimate ice water path by a factor of 2.
- Size distribution effects on both deposition growth and sedimentation are important

GASS Participation in WCRP Grand Challenges

Clouds, Circulation, and Climate Sensitivity Grand Challenge

- Radiative-convective equilibrium project to study convective aggregation
- Diagnostic study of radiative forcing in CMIP-class ("climate change") models
- Weak-temperature gradient project to study the interactions of tropical convection with the large-scale circulation (with applications to regional climate change in tropical precipitation)
- Grey-Zone study for the representation of convection

Water Availability Grand Challenge (more provisional)

- CAUSES: Evaluation of the contribution atmospheric errors in precipitation and radiation processes to errors in simulated summertime climate
- Evaluation of water cycle processes in high-resolution model (prospective HiRes project)