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Lower tropospheric mixing and cloud feedback
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O If init. mixing strength increased in one model,

does it lead to more positive cloud feedback, due to low cloud decrease ?

O Single Column Model results consistent with the idea (Zhang et al. 2013)



Experiments

O MIROC5-AGCM-T42
O AMIP-type (pre-industrial control, climatological AMIP SST & sea ice)

Control SST+4K
Cloud feedback with “OFF”

Shallow Conv OFF

Shallow Conv ON + tuning 4Cloud feedback»wrth ON

O Cloud feedback evaluated with CRE and Cloud Radiative Kernel, following
Zelinka et al. (2012)

O 30 years annual mean discussed (unless stated otherwise)

Issues to be discussed

Q1. Is cloud feedback more positive when Shallow Convection is turned on ?

Q2. If so, what is the mechanism ?



Shallow convection

O A parameterization based on Park and Bretherton (2009) implemented to MIROC5
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O Single column test for BOMEX case
O Results being compared with multi-LES output by Siebesma et al. (2003)
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Shallow convection

Bias of SCRE (MIROC5-T42-AGCM minus CERES-EBAF, annual mean)

Shallow convection OFF Shallow convection ON (after tuning)
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O SCRE bias alleviated over ocean, but worsened over land
0 Shallow convection causes decrease in low cloud



Cloud Feedback: Shallow convection OFF vs ON

Feedback parameter (30S-30N) [W/m?/K]
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Climate feedback more positive when ShC is turned on, due to net cloud component.



Cloud Feedback: Shallow convection OFF vs ON

Net Cloud Feedback to SST+4K, 30S-30N ocean (in W/m?)
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Net cloud feedback changes from negative to positive in unstable regimes.



Cloud Feedback: Shallow convection OFF vs ON

Net Cloud Feedback to SST+4K, 30S-30N ocean (in W/m?)

Composite with EIS, area-weighted Shallow Convection OFF
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Net cloud feedback changes from negative to positive in unstable regimes.
, but to opposite direction in stable regimes.



Cloud Feedback: Shallow convection OFF vs ON

ON minus OFF (208E, 4.2N)
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Contributions from different categories

High-top cloud

Middle-top cloud
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Positive changes come mostly from middle-top cloud, Shortwave component.




Response to SST+4K at (208E, 4.2N) | 10year average
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Increase in middle-cloud suppressed when ShC is turned on, through Deep convection.



Discussion

Q1. Is cloud feedback more positive when Shallow Convection is turned on ?

—> Yes.

Q2. If so, what is the mechanism ?

—> Not consistent with the one suggested by Sherwood et al. (2014).

middle top cloud
deep convection and detrained anvil cloud

Q3. What can we learn from the results ?

—> Model error ? Experiment not appropriate ?
Plausible physics in nature (which requires further testing) ?

Q4. What to do next ?

—> Check robustness (different tuning, different GCMSs)
Further understanding (ShC - ?? CAPE? - Deep convection)

Look for observational constraint



Summary

O We studied impact of a shallow convection parameterization on cloud feedback
with AMIP-type experiments using MIROC5-AGCM.

O Implementing a shallow convection scheme and tuning resulted in
more positive cloud feedback over low latitude oceans
, by suppressing increase in middle cloud through deep convection.

O Lower tropospheric mixing may be related not only to low cloud feedback

. but also to middle cloud feedback.
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