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The EUCLIPSE Challenge

To determine, understand and reduce the uncertainty in Earth
System Models (ESMs) due to cloud-climate feedback

Objectives:

1. Evaluation and Analysis of cloud-related processes in ESM’s.
(Ezv&elip physical understanding of how these cloud—relateD
esses respond and feedback to climate change.
3. Developing metrics to measure the relative credibility of the cloud
feedbacks produced by the different ESM’s thereby demonstrating a

reduction of the uncertainty in model-based estimates of climate
change.

4. Improve the Parameterizations of cloud-related processes in the
current ESM’s

How?




..Use the full hierarchy of models and observations

Process studies Evaluation Analyses
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1.

Where Were We (in 2010) ?
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2XCO, Scenario for 12 Climate Models
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Cloud effects “remain the largest source of uncertainty”
in model based estimates of climate sensitivity 1PCC 2007
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“Marine boundary layer clouds are at the heart of tropical
cloud feedback uncertainties in climate models”
(duFresne&Bony 2005 GRL)

8 T T T T T T
|
al tropical CRF semsitivity to SST |
T I
v al s | Be <0 _.-I.I ' X 5'0'models.
O ; =>0 l : -
o 15 AR4 models |
£ 2 |
g . i
0
T B il f | __‘Ef-:ﬂmndels
' : : N
als convective regimes | subsﬂmca regimes
-60 -40 -20 0 2{} 40

500 hPa large-scale vertical velocity (hPa day™)

IPCC report, 2007




Py A, SW: ocean

Still true in CMIP5
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Developing Metrics

Relation between model skill and model sensitivity?
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No relationship.........
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Physical Understanding of the tropical low cloud feedbacks

*Which are the physical mechanisms for the
low cloud feedbacks?

eThe reasons for intermodel differences in (low
level) cloud response (e.g. cloud physics vs
large scale forcings )

e Which of the model cloud feedbacks are the
more credible ?

Shallow cumulus




Only one existing physical mechanisms/hypotheses for low cloud
feedback (Paltridge 1980)

® adiabatic lapse rate of liquid water increases with temperature

e So in a warmer climate even under constant RH conditions, clouds will
contain more liquid water.....

<Which make them more reflective (i.e. higher albedo)....

- which supports a negative cloud feedback.

Present-day  \warmer
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2.

Process Studies and
Hypotheses
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Process Studies with Large Eddy Simulations and Single Column
Models for present and an idealized future climate (CGILS)

Zhang et al . 2013 (JAMES), Blossey et at 2012 (JAMES)
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@ Attacking the cloud feedback problem 14




Shallow cu Shallow cu under Scu Scu
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Shallow Cu Feedback: (turbulent mixing based hypothesis)

(Rieck et al Jas 2012)

® |ncreased SST leads to larger surface evaporation

= Just enough to sustain a constant RH if the cloud topped BL would not grow

* But increased surface evaporation drives deeper boundary layers

= which cannot be kept at the same RH

» S0 RH decreases and the BL becomes less cloudy => positive cloud feedback

shallower, moister

deeper, drier and

and cloudier less cloudy
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Shallow Cu Feedback: Moist Static Energy (MSE)-balance based hypothesis
oBrient & Bony, Clim. Dyn, 2012) In a warmer climate
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Scu Feedback: Physical Mechanism: more complicated

Inversion height zi : W.=Wg ps

Cloudbase height zb : depends on RH

entrainment flux

i entrainment flux

Zy
Radiative
cooling
surface flux surface flux

moisture temperature




e SST increase only - decrease zi : thinner cloud == positive feedback

* weakened subsidence : increase zi : thicker clouds => negative feedback
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Warmer Climate

- Increased surface fluxes = Weaker radiative cooling

-Leading to increased entrainment ~Leading to decreasing entrainment

—» Deeper BL— > Lower RH in BL — Higher cloud base — Less LWP —— Pos feedback

Control Climate Warmer Climate
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Summary Feedbacks: based on LES,MLM and Theory

SST increase: Scu : Cloud thinning == positive cloud feedback

Shallow Cu : Less Clouds == positive cloud feedback

SST increase plus weakened subsidence:

Scu : Cloud thickening => negative cloud feedback

Shallow Cu : Less Clouds == positive cloud feedback




3.

Emerging Constraints

]
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Spread in model climate sensitivity linked to atmospheric convective
mixing

Sherwood, Bony & Dufresne Nature (2014)

® | ower tropospheric mixing occurs through i) small scale shallow cumulus
mixing and ii) explicitly resolved circulations.

» Hypothesis: moisture transport increases in a warming climate at a rate
that appears to scale with the initial lower-tropospheric mixing

Deep circulation + hydrological cycle
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Lower-tropospheric mixing (large scale)
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e Equilibrium Climate Sensitivity (ECS) vs small scale

low tropospheric mixing

= Equilibrium Climate Sensitivity (ECS) vs large scale

low tropospheric mixing

e Equilibrium Climate Sensitivity (ECS) vs total large

scale tropospheric mixing

Attacking the clo
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4.

Cloud Feedback and Single
Column Modelling (Scu)

]
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........Use the full hierarchy of models and observations
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SCM Response (Inconsistent with too high amplitudes)
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R |dea: extending the CGILS

framework in order to map a
wider region of the phase space.
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Perturbed climate (PC) set-up

Constant incoming SW radiation
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SCM Results for Cloud Radiative Effect:

Strong intermodel differences

eDifferent magnitudes mainly due to changes
in cloud fraction rather than LWP.

<Considering only a few cases can be
misleading.

eUnderlying reasons for spread partly resides
in the physics as well as in the numerics.
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Dependence on the vertical resolution

EC-EARTH SCM, SF experiment.

Standard resolution High resolution
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The vertical resolution alone can change the sign of the feedback.
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Concluding Thoughts

* New hypotheses for low cloud feedback mechanisms have been put forward
(and tested in turbulence resolving models and Mixed Layer Models)

® Pointing to (small but persistent) positive cloud feedback for shallow cu

® Emerging Constraints link the strength of the sh cu feedback to their present
day intensity of lower tropospheric mixing.

Emergent Constraints (like the sherwood et al) focusses the research.

® Situation is probably more subtle for Scu (both wrt to the forcing and the
response)

e Both parameterizations and vertical resoltion are inadequate to make reliable
staments over the cloud feedback strength in GCMs

e Due to the fact that mixing and cloud schemes in GCMs are far more
unconstrained than in turbulence resolving models

e \We need to do a similar excercise for shallow cumulus
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