EUCLIPSE

EU Cloud Intercomparison, Process Study & Evaluation Project

Grant agreement no. 244067

Deliverable D2.7. Report on the identification of the processes or cloud types most
responsible for climate change cloud feedbacks and precipitation
responses.

Delivery date: 36 months

e -
PROGRAMME



EUCLIPSE WP2 Deliverable D2.7:

Report on the identification of the processes or cloud types most responsible for climate change
cloud feedbacks and precipitation responses.

Main contributors to this report:
Mark J. Webb (MetOffice/Hadley-Centre, UK), Sandrine Bony (LMD/IPSL, France), Daniel Klocke
(ECMWEF, UK), Gilles Bellon (CNRM, France) and Solange Fermepin (LMD/IPSL, France).

WP2 coordinator:
Sandrine Bony (CNRS/LMD/IPSL)

January 2013 (Month 36)

WP2 is focused on the analysis and the evaluation of climate simulations from CMIP5 (the 5th Phase of the
Coupled Models Intercomparison Project). An important component of WP2 is the analysis of the climate response to
anthropogenic perturbations, especially the changes in temperature, clouds and precipitation induced by the increase
of greenhouse gases in the atmosphere. This deliverable reports on the identification of the processes or cloud types
most responsible for the spreads of cloud feedbacks and precipitation projections in climate change experiments.

In collaboration with other workpackages (WP3 and WP4), the on-going EUCLIPSE research now aims at in-
terpreting physically the reasons why these processes or cloud types differ amongst models and thus contribute to the

spread of climate projections.

1 Decomposition of the inter-model spread in cloud feedback and cloud adjustment

into contributions from areas dominated by different cloud types.

The cloud feedback classification method of Webb et al (2006) is used to decompose the inter-model spread in
cloud feedback and cloud adjustment in the CMIP5/CFMIP-2 experiments into contributions from areas dominated
by different types of clouds. Webb et al (2006) found that in CMIP3/CFMIP-1 mixed-layer slab mode experiments, re-
gions where shortwave cloud feedbacks were stronger than the longwave cloud feedbacks were dominated by changes
in low and mid-level clouds. They also found that these areas contributed more to the variance in global cloud
feedback across these models than regions dominated other cloud types. Here we confirm that the latter conclusion
continues to apply in the CMIP5/CFMIP-2 experiments with the current generation of models, and find that this
applies not only to cloud feedbacks but also to cloud adjustments.

1.1 Introduction

Webb et al (2006) (hereafter W06) devised a classification system for local cloud feedbacks in climate models
based on the relative strengths of their longwave and shortwave cloud feedback components (Figure 1). They assessed
this classification method using outputs from the ISCCP simulator (Klein and Jakob, 1999, Webb et al, 2001) in nine
CFMIP-1 slab model experiments, run to equilibrium following an instantaneous doubling of CO2 concentration.
Regions where shortwave cloud feedbacks were stronger than longwave cloud feedbacks were found to be dominated
by changes in low topped clouds, with mid-level topped clouds also making a smaller contribution. Conversely,
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Figure 1: Cloud feedback classification from Webb et al (2006). Local values of the shortwave and longwave cloud feedback
terms Age and Ay are classified in a two-dimensional space with Age in the X dimension and Ay in the Y dimension.
Classes A(STLYN: orange) and E(S~LY: dark blue) contain cases where shortwave cloud feedbacks are stronger than relatively
neutral longwave cloud feedbacks. Classes SN green) and G(SML*: dark red) contain cases where values of Age are
relatively neutral compared with those of Arc. Classes B(S*L~: yellow) and F(S™L™: purple) capture cases where Agc and
Ar¢ tend to oppose each other, while Classes D(S™ L~ : light blue) and H(S™ L :red) contain cases where Agc and Ap ¢ are of
comparable size and the same sign. The cloud changes which dominate these classes in the CEMIP-1 models are also indicated.

regions where longwave cloud feedbacks were stronger than shortwave feedbacks, or longwave and shortwave cloud
feedbacks approximately cancelled, were found to be dominated by changes in optically thinner and optically thicker
high-topped clouds respectively. In some limited regions, longwave and shortwave cloud feedbacks were found to
take the same sign. This behaviour was found to be associated with opposing changes in clouds at different levels — for
example increases in thin cirrus accompanied by reductions in low level clouds. Regions with strong surface albedo
feedbacks were placed in a separate feedback class, but found to be dominated by increases in low-level clouds. W06
also decomposed the inter-model variance in global cloud feedback across the CFMIP-1 slab model ensemble into
contributions from these cloud feedback classes. The feedback classes dominated by changes in low-top clouds were
found to explain 59% of this variance, compared to 33% for those dominated by high-top clouds, and 8% from the
remaining “mixed” classes.

Subsequently, Soden and Vecchi (2011) applied this cloud feedback classification method to cloud feedback
estimates from twelve CMIP3 coupled models subject to 1% per year increases in CO2 concentration. They diagnosed
cloud feedbacks using the radiative kernel technique of Soden and Held (2006), which provides an estimate of the
cloud feedback based on changes in cloud properties while excluding the effects of cloud masking. This was in
contrast to the "Cloud Radiative Effect” method used in W06 and many earlier studies, which includes cloud masking
effects (see Soden et al, 2004). Despite these differences, Soden and Vecchi also found the low-cloud feedback classes



made the largest contribution to the inter-model differences in cloud feedback, explaining roughly three quarters
of the range. More recently, Zelinka et al (2012a) diagnosed cloud feedbacks from the CFMIP-1 models using a
*cloud radiative kernel’ technique based in ISCCP simulator outputs, which allowed them to be decomposed into
contributions from low, mid-top and high top clouds, as well as clouds with differing optical depths. Their results
suggested a more important role for mid-level topped clouds than is apparent using the W06 feedback classification
method, which does not separate the contributions from low and mid-level topped clouds.

A relatively new development in this area has been the finding that clouds can respond to changes in tropospheric
and land surface temperatures which occur shortly after CO2 is increased, on much faster timescales than those me-
diated by the ocean response (Gregory and Webb (2008), Andrews and Forster (2008), Dong et al 2009)). Such rapid
cloud adjustments have a radiative impact which can be considered part of the CO2 forcing. Inter-model differences
in feedbacks explain considerably more of the inter-model spread in climate sensitivity than those in CO2 forcing
(W06, Dufresne and Bony 2008), even when cloud adjustments are included in the CO2 forcing estimate (Webb et
al 2012, Andrews et al 2012). Cloud feedback contributes four times as much as cloud adjustment to the range in
climate sensitivity in the CMIP3/AR4 slab models (Webb et al 2012).

Zelinka et al (submitted) use their cloud radiative kernel technique to examine cloud adjustments and feedbacks
in five CMIP5 model versions, but the number of models for which ISCCP simulator data is currently available is too
small to draw robust conclusions about inter-model spread in cloud feedback. Although the Zelinka et al method is
in some ways preferable to the W06 cloud feedback classification method, the latter has the advantage that it can be
applied to all models, whether or not ISCCP simulator outputs are present. For this reason we consider it informative to
repeat the W06 decomposition of the global cloud feedbacks and cloud adjustments in the CMIPS/CFMIP-2 presently
available.

The CMIP5/CFMIP-2 experimental design (Bony et al (2011), Taylor et al 2011)) includes a number of atmosphere-
only experiments which are relatively inexpensive compared to AOGCM experiments, and contain a wealth of addi-
tional process diagnostics designed to support investigation of the physical mechanisms underlying cloud feedbacks
and adjustments. These are based on a control AMIP experiment forced with observed SSTs. Two SST perturba-
tion experiments are included, where the AMIP SSTs are increased uniformly by 4K (amip4K) and a patterned SST
perturbation scaled to 4K, based on a composite SST response from coupled models in CMIP3 (amipFuture). A
CO2 quadrupling experiment with fixed AMIP SSTs (amip4xCO2) is also included for the analysis of cloud adjust-
ments (following Hansen 2005). Here we apply the cloud feedback W06 decomposition method to these experiments
to see the extent to which cloud feedbacks and adjustments are dominated by the responses of low clouds. We do
this not only to see whether or not low clouds continue to dominate inter-model differences in cloud feedbacks in
CMIP5/CEMIP-2, but also to establish the extent to which the CFMIP-2 atmosphere only experiments can capture
this behaviour, and so provide a test-bed for further investigations.

1.2 Results and Discussion

Figure 2 shows the contributions of the W06 feedback classes to the inter-model spread in cloud feedback and
adjusted CO2 forcing in the CFMIP-1 experiments from W06, and CMIPS/CFMIP-2 experiments listed in Table 1.
The variance in the total feedback and adjusted forcing across each ensemble is decomposed into contributions from
the global cloud feedbacks and cloud adjustments, and the contributions to these from the different feedback classes
using an additive variance decomposition (see W06 for details). Figure 2(a) summarises the results from W06 from
CFMIP-1, showing that the cloud feedback explains 66% of the total feedback variance, and that 59% of this is due to



AGCM AMIP4 AMIP4xCO2 AmipFuture  AmipFuture  Amip4K Amip4K
Cloud Masking Cloud Masking

CNRM-CM5 X X X X X

CanAM4 X X X X X X
FGOALS-G2 X X

HadGEM2-A X X X X X X
IPSL-CMSA-LR X X X X

MIROC5 X X X X X X

MPI-ESM-LR X X X X X X
MPI-ESM-MR X X X X
MRI-CGCM3 X X X X

NorESM1-M X X
Nb of models 10 9 8 4 9 5

Table 1: Data available from CMIP5/CFMIP-2 GCM experiments.

the low-top dominated classes AE and L. The high-top dominated classes (C, G, B and F) explain 33% of the cloud
feedback variance, while the mixed classes explain 8%. As discussed above, the calculations in W06 did not separate
the effects of cloud masking and cloud changes, or the effects of cloud adjustment and cloud feedback. We have made
allowances for both of these in our analysis of the CEMIP-2 data, as follows.

For the cloud adjustments, we calculated the annual mean climatology of the change in the net CRE between
the amip and amip4xCO2 experiments listed in Table 1. We then made allowance for the cloud masking effect
by removing the longwave cloud masking diagnosed for CO2 quadrupling from HadGEM2-A. A more satisfactory
approach in future might be to remove cloud masking diagnosed from each model individually, but the necessary
diagnostics are not currently available from all of the models. Figure 2(b) shows that cloud adjustments explain 46%
of the variance in the adjusted forcing, and that 62% of the cloud contribution is due to the low-top dominated classes
A and E. (Class I is not calculated for cloud adjustment as surface albedo does not change appreciably.) The high-
top cloud dominated classes contribute 24%, while the mixed classes contribute 14%. Note that cloud adjustments
explain a smaller fraction of the inter-model variance in adjusted CO2 forcing than the fraction of total feedback
variance explained by cloud feedback.

For the amip4K and amipFuture SST perturbation experiments, we calculated the change in the annual mean
climatology of the net CRE relative to the amip control, and removed an estimate of the longwave cloud masking
effect calculated using the cloud radiative kernel method, kindly provided by Mark Zelinka. This was done by remov-
ing the ensemble mean longwave cloud masking from the models which have ISCCP simulator data available (see
Table 1). As in W06 we deal with the shortwave cloud masking effect by separating areas with substantial surface
albedo feedbacks into their own class (class I). These contribute very little to the inter-model spread in the cloud
feedback because sea ice concentrations are unperturbed in the amip4K and amipFuture experiments. In the amip4K
experiments, 87% of the variance in the total feedback is explained by cloud feedback, and the classes dominated by
low topped clouds (A, E and I) explain 68% of the cloud feedback contribution. The high-top classes explain 13%,
while the mixed classes explain 19%.

In the case of the amipFuture experiments however, the low top classes explain 41%, compared to 25% for
the high top classes and 34% for the mixed class. Although the low-top classes do still explain more of the cloud
feedback variance than the high-top classes or the mixed classes in this case, they explain less than 50% of the
total contribution from the cloud feedback, in contrast to the situation in the the CFMIP-1, amip4xCO2 and amip4K
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Figure 2: Contributions to inter-model spread in cloud feedbacks (a,c,d) and cloud adjustments (b) from the feedback
classes defined in Figure 1. The white bars show the percentage of the variance in the total feedback and adjusted forcing
across each ensemble due to global cloud feedback or adjustment. The coloured bars show the contributions from the individual
feedback classes.

ensembles. The amipFuture ensemble has larger contributions from class G, which is associated with a positive
feedback from thin cirrus clouds, and from class H which is associated with a positive longwave cloud feedback from
thin cirrus combined with a positive shortwave feedback from low-level clouds. Examination of the individual models
shows unusually large positive cloud feedbacks in these classes in IPSL-CMS5-LR in the amipFuture experiment in
the Eastern subtropical Pacific and Atlantic, which suggests a stronger sensitivity to the changing SST pattern in this
particular model. This may be a consequence of the eastward shift of deep convection in the tropical Pacic noted by
Vecchi and Soden (2007) being stronger in some models than others (Webb et al, 2012). The contribution from the
mixed class H is due in approximately equal parts to inter-model differences the strength of the positive shortwave
cloud feedback within this class (primarily due to low clouds) and those in the positive longwave cloud feedback (due
to thin cirrus clouds) (not shown). If the shortwave and longwave contributions from the mixed classes are added to
those from the low and high-top cloud dominated classes respectively, then the low cloud total contributes 59% to the
variance of the cloud feedback, while high cloud total contributes 41%.

To give an indication of the relative contributions of different geographical regions to inter-model spread in cloud
feedbacks and cloud adjustments, we show standard deviation maps in Figure 3. These are normalised to have global
means equal to unity, to support a relative comparison of cloud adjustments and cloud feedbacks. The cloud feedbacks
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Figure 3: Relative contributions of cloud feedbacks (a, ¢ and d) and cloud adjustments (b) from different parts of the
globe. The maps show local standard deviations across each ensemble, normalised to the same global mean.

in the CEMIP-1, amip4K and amipFuture ensembles, and the cloud adjustments in the amip4xCO2 ensemble all show
large standard deviations in the subtropical stratocumulus and trade cumulus regions, underscoring the dominant
contribution of low clouds to inter-model spread in cloud feedback and cloud adjustment. Large standard deviations
in cloud feedbacks are also seen in deep convective regions which may be indicative of shifts in deep convection
which differ from model to model. The responses in subtropical areas are often strongly correlated with the global
mean cloud feedback, but this is not the case for the deep convective regions (not shown). This may be a consequence
of the deep convective feedbacks operating over a much smaller area than the low cloud feedbacks.

2 Analysis of the spread of tropical precipitation projections

In CMIP5 like in CMIP3, precipitation projections from climate models exhibit a large spread at the regional
scale, especially in the tropics. In Deliverable 2.6, we presented an analysis framework of regional precipitation
projections decomposing the precipitation change into dynamic and thermodynamic components, and into fast and
slow responses. This analysis framework was used to interpret the robust multi-model mean pattern of precipitation
changes in a climate change scenario assuming no mitigation. Here, we use this framework to analyze the inter-model
spread of tropical precipitation projections. We show that most (about 70%) of this spread comes from the dynamic
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Figure 4: Multi-model mean projection of tropical precipitation changes at the end of the 21%° century. The upper left
panel shows the climatological multi-model mean annual precipitation (in mm/day) simulated by sixteen CMIP5 climate models
(including models from four EUCLIPSE modeling groups) in the pre-industrial climate. Other panels show the multi-model
mean change in annual precipitation projected by the same models (upper right) and its decomposition (AP = APyper + A Pgyy)
into thermodynamic (A Pyy,...) and dynamic (Fyyy,) components at the end of the 215t century in a climate change scenario without
mitigation (RCP8.5).

component, and that inter-model differences in the thermodynamic component are correlated with differences in the
present-day climatology of precipitation. These results guide our on-going efforts to better interpret uncertainties in

regional precipitation projections.

2.1 Spread of precipitation projections

We interpret the response of tropical precipitation by dividing it into two components : a dynamic one due to
circulation changes, and one independent of these. Using the vertically-averaged large-scale vertical (pressure) air
velocity @ as a proxy for large-scale atmospheric motions, we diagnose the dynamic component (A Pyy,,) as the
contribution to AP from changes in @. The remaining change is referred to as the thermodynamic component,
APiper, 1.6, AP = APgyn + APy (Bony et al. 2012). The multi-model mean AP, A Pype; and APyy,, are shown
on Figure 4.

AP;y,er exhibits a "wet get wetter, dry get drier” regional pattern?. This is primarily explained by the increase
of atmospheric water vapour with temperature (following the Clausius-Clapeyron thermodynamic relationship), and
the associated increase of moisture convergence in the moist, rising branches of the present-day tropical circulation
and moisture divergence from the dry, subsidence regions. This pattern is thus closely related to the climatological
distribution of precipitation. In contrast, circulation changes lead to a more complex pattern of precipitation changes
(AP, dyn)-

As explained in Deliverable 2.6., a large part of the long-term circulation response (and thus the dynamic com-
ponent of the precipitation response) to increased greenhouse gases does not depend on global warming but results
from the fast and direct effect of CO4 on the large-scale atmospheric circulation (the reduced radiative cooling of the
troposphere associated with increased CO2 weakens the upward and downward large-scale vertical motions and the
strength of the overturning circulation). This effect, which depends on very fast processes, is not primarily mediated
by surface warming nor by land-sea contrasts.

Figure 5 shows the inter-model spread across CMIP5 models of regional precipitation projections in a climate
change scenario without mitigation (RCP8.5). The spread is maximum over tropical oceans and the maritime conti-
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Figure 5: Inter-model spread of regional precipitation projections in the tropics. The upper panel shows the spread (inter-
model standard deviation, in mm.day ~ ') of precipitation changes projected by 14 CMIP5 OAGCMs in the RCP8.5 scenario at the
end of the 215" century. The two middle panels show the spread of the thermodynamic and dynamic components of precipitation
changes in the same models and the same scenario. The bottom panel shows the spread of the fast dynamic component of
precipitation changes inferred from the first simulated year of abrupt4xCO2 experiments. The tropical-mean standard deviations
of the different panels from top to bottom are: 0.69, 0.35, 0.58 and 0.63 mm.day .

nent, with secondary maxima over South America and central Africa. Over ocean, most of the spread results from
inter-model differences in the dynamic component. Over land, the contributions of the dynamic and thermodynamic
components is more equal. Over the tropics as a whole, about 70% of the regional spread comes from the dynamic
component.

2.2 Early analysis of the spread

The sign and the amplitude of the thermodynamic component AP, is closely related to the climatological
distribution of precipitation (Bony et al. 2012). This result, which is true for any individual model, suggests that
inter-model differences in the simulation of the present-day (or pre-industrial) precipitation pattern likely translate
into differences in the thermodynamic component of precipitation projections. It is verified by Figure 6, which shows
that the regional pattern of A Py /ATy is highly correlated to the climatological pattern of precipitation.

The dynamic component, which explains most of the regional spread of precipitation projections, deserves a
more detailed analysis. As a first step, we examined how much inter-model differences in the long-term dynamic
component could be related to differences in the fast response of the circulation to anthropogenic forcings. Figure 5
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Figure 6: Correlation between precipitation climatology and the thermodynamic component of precipitation changes
The upper panel shows the multi-model mean pattern of annual precipitation (in mm/day) derived from 16 CMIP5 OAGCMs in
the pre-industrial climate (piControl). The middle panel shows the multi-model mean pattern of the thermodynamic component
of precipitation changes normalised by the local surface warming (A Pyper /AT, expressed in mm/day/K) inferred from the
same models in abrupt4xCO2 experiments. The bottom panel shows the correlation (across 16 CMIP5 models) between the
precipitation climatology and the thermodynamic component predicted by individual models.

shows that the fast dynamic component of precipitation changes is significant in regions where the spread of the
long-term dynamic component is the largest.

Figure 7 quantifies the correlation across CMIPS models between the fast and long-term dynamical patterns of
APyyy. Over land areas (e.g. over Africa), the signs of the fast and long-term dynamic components are often opposite.
This is consistent with the antagonist effects of CO2 and temperature (local surface warming and transient land-sea
contrasts) on large-scale rising motions over land (Bony et al. 2012). Over many areas of tropical oceans, but also over
part of Amazonia and of the Sahel, the fast Pdyn correlates quite strongly with the long-term component (correlation
across models > 0.6 or 0.8). Gaining confidence in the pattern of the fast dynamic component may thus be a way to
gain confidence in a key component of long-term precipitation projections.

Our on-going research aims at understanding further the origin of the spread of A Fyy,, especially the physical
mechanisms underlying the responses of the atmospheric circulation to greenhouse gases and temperature. Results
will be reported in deliverable D2.8.
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Figure 7: Inter-model correlation between fast and long-term dynamic components of precipitation changes. The figure
shows the linear correlation coefficient (computed across 14 CMIP5 models) between the fast dynamic response of precipitation
to increased CO4 (A Pgyn fast, inferred from the first year of abrupt4xCO2 experiments) and the long-term dynamic response of
precipitation (A Py, RCP, estimated from RCP8.5 experiments at the end of the 21%¢ century).
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