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Report on a study identifying the utility of NWP based methods for identifying and narrowing 
sources of divergent behaviour in cloud-climate feedbacks in ESMs 

M.J. Rodwell, ECMWF, 3 July 2014 

This study focuses on the use of Numerical Weather Prediction (NWP) to assess climate models. In 
particular, the assessment of errors in the parameterisation of “fast” aspects of the physics; which 
have an impact on weather forecasts and also represent a major source of uncertainty in climate 
sensitivity. The study is in two parts. The first is an assessment of diagnostic techniques themselves; 
to understand their strengths and weaknesses in the evaluation of climate model errors. The second 
part uses one of these techniques to evaluate various formulations of the parameterisation of 
shallow convection. 

1. Comparison of diagnostic methods 

In Numerical Weather Prediction, the forecast is routinely assessed against verifying observations 
and this provides a powerful framework for investigating model errors. When attempting to predict 
the climate decades into the future, such verifying observations are obviously not available. 
However, a lot of the uncertainties in climate models are associated with ‘fast’ aspects of the physics 
of the atmosphere (convection, clouds, etc.) which are also important in NWP. This has led previous 
studies to suggest that a lot can be learned about climate models by running them in ‘NWP mode’. 
Here we compare a couple of the most promising NWP approaches to climate model assessment. 

The first (and most widely feasible) NWP approach is to simply initialise a climate model with a set of 
initial conditions (analyses) produced by one of the world’s leading NWP centres, and to inspect the 
systematic errors that evolve. This approach is sometimes called the “Transpose-AMIP” method 
(Philips et al., 2004). At forecast lead-times of a few days or more, this approach can usefully assess 
the climate of the model. While it is important to recognise this benefit of the Transpose-AMIP 
method, this study is primarily concerned with a somewhat different issue; that of diagnosing 
deficiencies and sensitivities within individual parameterised processes (such as stratocumulus 
clouds for example) that are the root-causes for model climate deficiencies. At such lead-times (of a 
few days or more), interactions that take place within the atmosphere (between planetary waves 
and convection in the tropics for example) mean that it can be difficult to identify the root-causes 
themselves. In addition, these interactions give rise to chaos which generally leads to reduced 
statistical significance of any results - necessitating longer experimental periods. By examining 
shorter lead-times, one reduces the time over-which interactions can obscure the underlying model 
problems, but a second diagnostic barrier can arise. This barrier is associated with the fact that the 
analyses themselves are not perfect, and so the systematic ‘errors’ one obtains will actually conflate 
two sets of errors - those in the analyses and those in the climate model. At short lead-times (less 
than a few days), forecast errors are smaller and so these analysis errors cannot necessarily be 
neglected. The ability, or otherwise, of the Transpose-AMIP approach to identify model deficiencies 
thus lies in our ability to find a forecast lead-time sufficiently long to be able to neglect analysis 
error, but sufficiently short to avoid complicating interactions and loss of significance. This search 
has been one component of this work topic. 

The second NWP approach to model assessment aims to implicitly account for the errors in the 
analysis, so that weather forecasts made with the climate model can be assessed at very short lead-



times - thus minimising the complicating effect of interactions. To understand how this approach can 
account for the errors in the analysis, one needs to understand how the analyses are produced 
within the forecast centre’s data assimilation system. While data assimilation systems vary in many 
details, a key aspect remains the same - new observations are ‘optimally’ combined with a short 
“background” or “first-guess” forecast (initialised from a previous analysis) in a way that is consistent 
with estimated errors in the observations and background. A key diagnostic of the data assimilation 
is the “analysis increment” which is simply the difference between the new analysis and the previous 
background forecast. The key component to this second diagnostic approach is that the background 
forecast is actually made with the climate model - including at the climate model’s resolution 
(consistent linearized and adjoint models are also employed in the incremental 4D variational 
assimilation scheme used at ECMWF). By doing this, the magnitude of the increments will be a good 
estimate of the inconsistency between the climate model and the observations. Furthermore, the 
tendencies to the state vector that individual process parameterisations (and the resolved dynamics) 
produce within the background forecast can be compared with the increments, so that the 
inconsistencies may point to key parameterisation problems. This approach is sometimes called the 
“Initial Tendencies” method. It was proposed by Klinker and Sardeshmukh (1992) and refined by 
Rodwell and Palmer (2007). It relies on the ability to perform data assimilation with the background 
forecasts made using the climate model. This is perhaps the key limitation of the approach. If such 
data assimilation is possible, then the approach is generally easier to perform than Transpose-AMIP 
since it avoids issues associated with interpolation of analyses to the climate model’s own grid. In 
order to assess the ability of the Initial Tendencies method to identify model deficiencies, artificial 
perturbations have been introduced into the climate model, and the method tasked with identifying 
these perturbations. 

A full account of this comparison of diagnostic methods is presented in Klocke and Rodwell (2014). It 
aims to address an important yet under-represented topic in the climate literature until now. Here 
we discuss one figure from this study. Figure 1 shows differences in outgoing long-wave radiation (-
ΔOLR) between a set of control forecasts and, for each column, a differently perturbed set of 
forecasts. The control forecasts use the ECMWF model run at a ‘climate resolution’ of ~80km in the 
horizontal, and initialised from “native” analyses that are produced using the same background 
model. The perturbed forecasts differ from the control forecasts in their initial conditions and/or in 
the model used to make the forecast. Results are averaged over forecasts initialised at 12UTC each 
day during April and May 2011. Each row shows a different forecast lead-time. 

In the right-hand column in Figure 1, the perturbed forecasts involve a change to the convection 
scheme (a decrease in convective entrainment coefficient). This change is also used in the model 
used to produce the initialising analyses. This column therefore represents the Initial Tendency 
methodology. Statistically significant differences in OLR are apparent in the Inter-Tropical 
Convergence Zone at lead-times of 6h and 24h. The lower convective entrainment rate leads to 
higher-reaching convection, an increase in high-cloud cover and consequently to reduced OLR. These 
differences demonstrate that the Initial Tendency approach can ‘find’ the signal of the artificially-
introduced physics perturbation in a climatologically important radiation field (as well as in the initial 
tendencies themselves). After 24h, the signal and its significance are lost due to interactions and the 
growth of chaos. 



In the left-hand column in Figure 1, the perturbed forecasts involve a different set of initial 
conditions (analyses from the UK Met. Office) but use the same ECMWF control model for the 
forecasts. This experimental set-up is to investigate the “spin-up” issues inherent in the Transpose-
AMIP methodology. Higher temperatures in the Met Office analyses lead to strong, and statistically 
significant, initial cooling of the Earth system via the OLR. This spin-up issue is present for lead-times 
up to at least 2 days - beyond the lead-time where the Initial Tendencies (right-hand column) were 
able to identify the model perturbation and thus suggests there is no lead-time at which the 
Transpose-AMIP methodology would be able to identify the forecast model perturbation. However, 
the design for these experiments is somewhat crude. For example, we interpolated Met Office initial 
conditions from only 16 pressure levels, and there are inconsistencies associated with the 
initialisation of the surface. Although such difficulties are, to some degree, inherent in the transpose-
AMIP methodology, it is interesting to see how well the transpose-AMIP approach would perform 
when interpolation issues are kept to a minimum. This is explored in the final set of perturbed 
forecasts. 

In the middle column in Figure 1, the perturbed forecasts involve the entrainment perturbation to 
the forecast model, but are initialised from the control analyses. This experimental set-up represents 
the Transpose-AMIP methodology with interpolation issues minimised as much as possible. Since 
both sets of forecasts are initialised from the same set of analyses, we might expect the difference in 
OLR to be small at a lead time of 6h. From the results in the right-hand column, we would also 
expect the difference in OLR signal to be statistically insignificant after day 2. Both of these predicted 
results are evident in the middle column. However, even with this near-perfect transpose-AMIP 
experimental design, we see that the true signal of the model perturbation (i.e. reduced OLR due to 
higher convection) does not emerge at intermediate lead times (such as at 24 h). Hence, even with 
the best possible initialisation of Transpose-AMIP style experiments, it does not seem possible to be 
able to identify our introduced model perturbation. It is possible that Transpose-AMIP style 
assessments of more strongly differing models might still be possible, but these results highlight the 
fundamental importance of initialisation and spin-up. 

The main conclusions of this study are that, although the Transpose-AMIP methodology can clearly 
be useful for comparing the overall performance of (climate) models, it may not be able to readily 
identify the reasons for the difference in this performance (and thus not be able to say much about 
the formulation of cloud parameterisations for example). The Initial Tendency approach is more able 
to identify errors in model formulation (but requires the use of a data assimilation system). 

There are other, more widely applicable, approaches to climate model assessment which go some 
way to following the Initial Tendency methodology. For example, the calculation of the “nudging” 
required to force a climate model to follow a set of analyses produced elsewhere could be assessed. 
The nudging takes the place of the analysis increments in the Initial Tendency approach (e.g. Jeuken 
et al., 1996; Mapes and Bacmeister, 2012). It is also worth experimenting with less complex data 
assimilation systems, which do not involve so many “forward models” (which project model fields 
onto satellite observations). Simplified approaches such as these may represent a smaller first step 
which could be sufficient, or may give further impetus towards the development of full data 
assimilation systems. The difficulty that the development of a full data assimilation system presents 
should also encourage those who already possess a full data assimilation system to apply it to the 
climate question. 



 

Figure 1. Differences in top-of-atmosphere outgoing long-wave radiation (−ΔOLR) between a 
perturbed set of forecasts and the control set of forecasts (perturbed minus control). The perturbed 
forecasts are (left) control model initialised from the UK Met Office analyses, (middle) perturbed 
model initialised from the control analyses, and (right) perturbed model initialised from its own 
(native) analyses. The lead-time ranges are (from top to bottom) 0–6 h, 0–24 h, 24–48 h and 96–120 
h. Saturated colours indicate statistically significant differences at the 5% level. Note that -ΔOLR is 
used (rather the +ΔOLR) as positive values then represent a positive change in atmospheric heating. 

2. Diagnosing different representations of shallow convection using the Initial Tendencies approach 

Two approaches to the representation of shallow convection have been compared. The full 
comparison is documented in Bechtold et al., (2014), but here we focus on the evaluation using the 
Initial Tendencies method. 

The first approach is that used in the operational ECMWF model. It is discussed in more detail in 
Bechtold et al. (2014) and references therein. In summary, the planetary boundary layer (PBL) 
includes the interacting processes of dry diffusion, cumulus mass flux, clouds and radiation. The 
model distinguishes between a stable PBL, a dry convective PBL and a cloudy PBL. The cloudy 
boundary layer is further classified into either a well-mixed PBL with stratocumulus clouds, a 
convective so called ‘decoupled’ layer with cumulus clouds (the decoupling criterion is the inversion 
strength), and a purely convective PBL with cumulus clouds. One weakness of this approach is the 
threshold-dependent switching which makes it difficult to enable smooth transitions between 



regimes. Nevertheless, there are important strengths in the current operational framework; for 
example it permits a consistent treatment of shallow and deep convection which is important for 
representing the diurnal cycle. 

The second approach takes a different view-point and seeks more consistency within the PBL by 
integrating the well-mixed and decoupled regimes into a single scheme that includes two ascents: a 
dry plume stopping at cloud base, and a more buoyant ‘moist’ parcel that reaches the cloud top. 
Such an approach, called “DUAL-M”, was pursued by Neggers et al. (2009). It showed encouraging 
results in the ECMWF model, with more realistic trade cumulus cloud structures and lower and more 
realistic cloud top heights. However, problems with the DUAL-M scheme remained, notably the 
underestimation of continental shallow clouds, leading to a warm bias over the continents and some 
lack of stabilisation in non-surface driven convection as encountered in frontal clouds. The scheme is 
therefore implemented in the ECMWF model (as an option) with the original shallow convection 
scheme taking-over if parcels are ascending from elevated layers. 

The data assimilation and weather forecasts used in this comparison have been performed at a 
horizontal resolution of ∼40 km. For each model configuration, consistent initial conditions are 
generated using the same model and a 6h assimilation window. Forecasts are initialized from these 
analyses every 6h (at 00, 06, 12 and 18 UTC) daily between 30 December 2011 and 2 February 2012. 
Initial tendencies from physical processes (and the dynamics) are accumulated over the first 6h to 
obtain a more detailed insight into the importance of the individual processes. 

Figure 2 shows these initial temperature tendencies averaged over the 4 control forecasts per day 
for January 2012, together with the corresponding analysis increments and mean analysed evolution 
over January. Also shown is the zonal-mean analysis temperature. Saturated colours indicate 
statistically significant values. Heating by convection in the tropical troposphere is largely balanced 
by dynamical cooling (in the ascending branch of the Hadley Circulation), radiative cooling and net 
(evaporative) cooling in the cloud scheme. Convective heating is also strong in the wintertime 
middle latitude storm track regions where it tends to be balanced by radiative and cloud evaporative 
cooling. The cloud scheme produces net condensational heating in the extratropical mid 
troposphere, where it is largely balanced by radiative cooling. The zonal-mean radiative tendency 
(cooling) is rather uniform with latitude, but has a peak cooling rate near 800 hPa in the storm tracks 
(not evident in the zonal mean plots shown). In the PBL, diffusive heat transport is strong. It is 
compensated by dynamical cooling and cooling in the sub-convective-cloud-layer through the 
evaporation of rain.  

While these processes are largely in balance with each other over the season, there is a small 
evolution term (note the smaller contour interval, and the lack of statistical significance) that 
represents the annual cycle and the average of synoptic variations. The other notable term in the 
budget is the analysis increment (but again note the reduced contour interval). This is statistically 
significant and largely reflects a correction for systematic errors in the modelled processes. The 
tropical zonal-mean increments show a heating/cooling dipole of O(0.06 K/6h = 0.25 K/day). This is 
related to errors in the zonal-mean Hadley circulation which the model tends to weaken (not 
shown). Heating increments in the extratropical upper troposphere are thought to result from a drift 
in humidities (Leroy and Rodwell, 2014) - that are poorly constrained by observations - that then 
leads to an imbalance between radiative cooling and dynamical warming. 



 

 

Figure 2. Zonal-mean initial temperature tendencies (accumulated over the first 6h, and averaged 
over forecasts initialised every 6h during January 2012) together with the mean analysis increment, 
mean analysed evolution over January and the residual that represents other numerics within the 
model and closes the budget. Also shown is the zonal-mean analysis temperature. Values 
significantly different from zero at the 5% level using a Student’s T-test are shaded with more 
saturated colours. 

When the DUAL-M scheme used instead of the operational PBL scheme, cloud evaporative cooling is 
reduced in the PBL and convective heating is also reduced (in compensation). Diffusion heating 
tendencies strengthen near the surface and there is less radiative cooling at the top of the PBL. 
Much of these changes (not shown) compensate each other but there is a small change in the overall 
balance. This is reflected in the change to the zonal-mean analysis increments shown in Figure 3. For 
the tropics, note that these changes in mean increments act to reduce the increments shown in 
Figure 2, and thus indicate that the DUAL-M scheme is beneficial in this respect. These and other 
results demonstrate that the ‘dual mass flux’ approach is promising. It is thought that this can be 
realized within the current framework without the inconsistency of involving the additional 
statistical cloud scheme within the present formulation of DUAL-M. 



 

Figure 3. Zonal-mean difference in temperature increments resulting from replacing the operational 
PBL scheme with the DUAL-M scheme. 
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