

Forcing, Feedbacks & Climate Sensitivity of the CMIP5 models

Tim Andrews, Mark J. Webb, Jonathan M. Gregory & Karl E. Taylor CFMIP meeting– June 2011, Email: timothy.andrews@metoffice.gov.uk

Motivation: Climate sensitivity and CMIP5

Met Office

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING

In CMIP5, we are also likely to have a range of projections, so we will need to explain why different models respond differently to the same external forcing

- Metrics for measuring a model's response to external forcing
- Methods that can be used to evaluate these metrics with the CMIP5 models
- Some early results from CMIP5 (3 models!)
- Limitations, discussion and summary

Climate change metrics in AOGCMS

- There are many metrics that can be used to quantify and compare a model's response to external forcing, how might they have changed since CMIP3?
- <u>Transient climate response</u> (TCR): ΔT about yr 70 after 1% CO₂ increase. It is a more 'realistic' metric and can be readily computed, it can also provide some information about transient heat uptake & feedbacks (e.g. Gregory and Forster, 2008)
- <u>Eqm climate sensitivity</u> (ΔT_{2x}) : eqm ΔT after $2xCO_2$. For CMIP5, this is too computationally expensive for AOGCMs, but large step forcing experiments are still a very useful 'science tool' for evaluating and comparing forcing and feedback processes
- This talk will focus on how we can use abrupt $4xCO_2$ experiments in CMIP5 to diagnose and compare model forcing and feedback processes, as well as make a prediction of each models ΔT_{2x}

CMIP5 data					
Met Office Hadley Centre		Coupled run that is not part of CFMIP2 experiments			
		Abrupt4xCO2	sstClim4xCO2	CMIP3 ΔT_{2x}	
	INM-CM4	150yr	30yr	2.1 K	Spans CMIP3
	CNRM-CM5	150yr	n/a	n/a	 climate sensitivity
	HadGEM2-ES	270yr (in house)	30yr (in house)	4.4 K 🤳	range

- Also includes corresponding pre-industrial fully coupled run and preindustrial sst-climatology
- Not much of a multi-model intercomparison yet, but fortuitously these models represented the low and top end of the CMIP3 generation

How do we quantify model response?

Following, Gregory et al., (2004) and Gregory and Webb (2008), the energy balance of the climate system can be expressed by:

 $N = F - Y \Delta T$

How do we quantify model response?

Following, Gregory et al., (2004) and Gregory and Webb (2008), the energy balance of the climate system can be expressed by:

 $N = F - Y \Delta T$

CMIP5 piControl & abrupt4xCO2

Met Office

Prediction of ΔT_{2x} has a range ~ 2 to 4.6 K, very similar range to CMIP3

• Which feedback processes give rise to ~ -0.63 to -1.50 Wm⁻² K⁻¹ range?

Differences in clear-sky feedbacks not enough to explain sensitivity range

- As defined by CRE, cloud feedback is: ~ +0.1 Wm⁻²K⁻¹ HadGEM2-ES ~ -0.35 Wm⁻²K⁻¹ INM-CM4.0
- Largest differences occur in the Pacific basin, particularly in the NH

Differences in CRE feedback is the largest contributor to sensitivity range

Discussion: i) is it really linear?

 In AOGCMs, separating forcing and feedback can be complicated, as shown below for abrupt 4xCO₂ in HadCM3

Discussion: ii) how many different timescale responses are there?

Discussion: ii) how many different timescale responses are there?

[©] Crown copyright Met Office

- Climate sensitivity helps us understand the causes of uncertainty in climate model projections.
- We can now look at this in some CMIP5 models as data becomes available.
- Preliminary results show that the range of eqm climate sensitivity has not reduced from the previous generation of models.
- Differences in cloud feedback, once again, appear to be the largest single cause of this uncertainty.
- There are limitations on the methods used, such as linearity. As more models become available this will indicate the extent of the problem.
- Finally, are we too CO_2 focused when performing sensitivity experiments?

Additional slides

HadGEM2-ES - TOA LW clear-sky (Wm⁻²)

 In HadGEM2-ES, there is also a "cloud adjustment" that comes about due to plant-CO₂ physiological effects, reducing transpiration and hence drying and warming the boundary layer (Doutriaux-Boucher et al., 2009)