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CMIP3 TOA Cloud Radiative Forcmg (W/mZ)

ACRF = CRF__, - CRF_,_
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Impact of the Atmospheric Cloud Radiative Forcing on
GCM-simulated tropical circulation and precipitation
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Cloud-radiative effects strengthen

the Hadley-Walker circulation and
make the ITCZ more narrow
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Regional response of precipitation to climate change

multi-model
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What is the impact of changes in cloud-radiative forcing on precipitation ?

What controls the response of tropical precipitation to climate change ?



Water budget :



Water budget :

- Prominent role of the
vertical advection term

- What change under
global warming ?

— Clausius-Clapeyron
— shape of w profile
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CMIP3 multi-model precipitation
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Analysis Method
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{Q} Let’s characterize the w(P) profile by :
e W = |w| (mass-weighted vertical average)

e vertical structure

vAg . . . ..
<',>(V)g In the Tropics, the vertical structure of w is close to a first baroclinic

mode (i.e. max in mid-troposphere)

A

<\;(')Z> Let’s compare the actual w(P) profile with a vertical profile 2(F) that
would have the same vertical average (Q = @) but a prescribed (1st
baroclinic) vertical structure () such as Q(P) =@ (P).

Then w(P) can be expressed as :  w(P) = QP) +{w(P)—-Q(P) }

Then P=F 4+ Fq -+ H,; - with 1,=- [-w(P) ;(i]
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CMIP3 multi-model precipitation
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AP/AT, = (AE + WAL, + + /AT,

CMIP3 multi-model dP/dTs
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Mean precipitation change predicted by CMIP3 models (1pctCO2)
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Mean precipitation change predicted by CMIP3 models (1pctCO2)

AP =AE+®wAl, + AH, + + T, A

CMIPB dethP totol chonge
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Interpretation of dynamical changes ?
Role of ACRF changes ?



Moist Static Energy budget (h = C,T'+ gz + Lq) :

Fo+ Rep +@0Ty + Hy + V& + ACRE = 0 with Ty, = [ g%]
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There are regions where
the dynamical change in

precipitation turns out
dominated by a

to be

cloud-radiative-dynamical

feedback

e.g. Indian Ocean,
eastern equatorial Pacific,

tropical Atlantic

L, AD

CMIF’E deltﬂF’ dynamical campanent
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CMIPS IPSL-CM5-LR OAGCM :

AP =AF+wTAl', + A, + +1I',Aw
delta P: total cha
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deltﬂ P dynummml campoﬂent

Similar results
found for
CMIP5 IPSL-CM5A-LR ' Aw
OAGCM
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- A methodology is proposed to analyze regional dynamical and precipitation changes in
GCMs (or in observations).

- It makes it possible to assess quantitatively the contribution of ACRF changes to regional
changes in the large-scale vertical motion of the atmosphere.

- Its application to CMIP3 models suggests that in some regions, ACRF changes play a
substantial or even dominant role in regional precipitation changes, especially in equatorial !
regions.

- The response of cloud-radiative effects to global warming thus matters for much more than
just climate sensitivity.

- The aim is now to apply this analysis to CMIP5 models to better understand the origin of
robust and non-robust responses of clouds and precipitation to climate change.



Thank You !
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