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Objective 

Use comprehensive airborne 
profile/remote sensing dataset 
from VOCALS-REx to study key 
factors regulating decoupling and 
early-morning cloud cover in SE 
Pacific cloud-topped boundary 
layers (CTBLs). 

Importance of CTBL decoupling 

CTBLs can decouple into separate turbulent 
layers driven by surface fluxes and by cloud 
processes.  

Vertical structure of CTBL important to … 
Cloud cover 
Vertical mixing processes 
Precipitation 
Subtropical Sc-Cu transition  

Decoupling allows CTBL to deepen without 
cloud thickening. 
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Conclusions 
•  Aircraft lidar/radar/LCL and profile measurements show early-morning 

Sc-capped boundary layers in which ‘well-mixed’ cloud thickness    
 ΔzM = zinv – LCL > 400-500 m  

  are typically decoupled; otherwise they are typically well mixed. 
•  Drizzle formation promotes, but is not required, for decoupling. 
•  Early-morning cloud fraction is loosely correlated to inversion stability 

ratio κ in this region. 

Learn more in our submitted paper: 

h"p://www.atmos-‐chem-‐phys-‐discuss.net/11/8431/2011/	  
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Profile-based decoupling measures 

Leg-based decoupling measures 

Testing decoupling mechanisms 
 
Diurnal – inadequate midday sampling 
Drizzle – cloud radar gives drizzle proxy 
Moisture flux – bulk estimates from subcloud legs 
Deepening – correlate with depth of cloud layer 

Leg and profile measures are consistent 

Inversion jumps, cloud cover & decoupling 
Inversion jumps: calculated objectively in non-
POC profiles; visually in POCs.   

Moist jump parameter  κ = 1 + cpΔθL/LΔqT 
Cloud fraction: for pre-10 LT profiles with 
adjacent subcloud legs. 

Inversion jump results 

1. Broken cloud sometimes seen with κ > 0.3, 
but cloud cover mostly larger than LES-
predicted range from Lock (2009, QJRMS) 

2. Many decoupled CTBLs with κ < 0.4 are 
100% cloudy. 

3. POC and non-POC distributions overlap.  

Drizzle and stronger LHF promote decoupling, 
but are not required. 

Result: Decoupling tightly correlated with 
well-mixed cloud depth ΔzM = zinv - LCL  

ΔθL and ΔqT correlated ΔzB  and ΔqT correlated 

ΔzB  = Leg-mean lidar cloud base – 150 m LCL 

ΔqT  = - qT([0.75-1]zinv) + qT([0-0.25]zinv)  
ΔθL  =   θL ([0.75-1]zinv) - θL ([0-0.25]zinv) 

Physical 
argument 

Least-squares fit 

Well-mixed (28%) 
ΔqT < 0.5 g kg-1 

ΔθL < 0.5 K 

Drizzle 
proxy 

ΔqT ΔθL 

89 subcloud legs 110 profiles 

Flight  track 
Lidar cloudbase 

In-situ LCL 

Shades: Wyoming cloud radar 
reflectivity 

ΔθL 

Non-POC profile 
POC profile 

ΔqT 

ΔzB 

Lidar 
base 
LCL 

Well-mixed 
Decoupled 
POC (open circles) 

Lock (2009) 
LES range 

Albrecht et al. 1995 

Well-mixed Decoupled 

Well-mixed 

Decoupled 


