Sensitivity of the IPSL-CM5a low cloud feedback to physical parameterizations: Can CGILS help us to predict and understand it?

Florent Brient, Sandrine Bony

Laboratoire de Meteorologie Dynamique / IPSL

June, 9th 2011

CGILS framework for IPSL model

- ▶ SCM able to reproduce cloud profil in both present and future climat only by adding of a ω -stochastic forcing using s6 CGILS methodology
- Which physical parameters influence the most the cloud feedback? Is it possible to anticipate the intensity of the 3D feedback by using 1D experiments?

"Tuning" Parameters

"Tuning terms" are parameters which allows us to ajust a climate model for avoiding drifts (zero Net TOA budget) and giving a GCM climate not to far away from the real climate.

Those terms have a impact on many physical mechanisms (convection, clouds, circulation...): Obvious effect on present climate.

EUCLIPSE Meeting (Utrecht): What about climate sensitivity?

Using 1D model with s6 CGILS experiments allows us to test the influence of each of those parameters. Three are selected:

- ► Sub-grid scale cloud parameterization (1 parameter)
- ▶ Impact on Liquid Water Content (2 parameters)

"Tuning" Parameters

"Tuning terms" are parameters which allows us to <mark>ajust a climate mode</mark>l for avoiding drifts (zero Net TOA budget) and giving a GCN climate not to far away from the real climate.

Those terms have a impact on many physical mechanisms (convection, clouds, circulation...) : Obvious effect on present climate.

EUCLIPSE Meeting (Utrecht): What about climate sensitivity?

Using 1D model with s6 CGILS experiments allows us to test the influence of each of those parameters. Three are selected:

- ▶ Sub-grid scale cloud parameterization (γ)
- ► Impact on Liquid Water Content

GCM sensitivity to cloud statistical scheme?

Cloud Amount versus Relative Humidity for CMIP5 normalized variance (γ) using our statistical scheme.

- ► $SCM: \gamma \nearrow \text{ (increasing of subgrid scale variability : min in red, max in orange) } \overline{RH} \searrow \text{CF} \searrow$
- Mean atmospheric state depends on γ but owing to the influence of γ on \overline{RH}
- \triangleright $\triangle CF$ function of γ ?

GCM sensitivity to cloud statistical scheme?

Cloud Amount versus Relative Humidity for differents assumptions about subgrid-scale variability (γ)

- ► $SCM: \gamma \nearrow \text{ (increasing of subgrid scale variability : min in red, max in orange) } \overline{RH} \searrow \text{CF} \searrow$
- Mean atmospheric state depends on γ but owing to the influence of γ on \overline{RH}
- \blacktriangleright $\triangle CF$ function of γ ?

GCM sensitivity to cloud statistical scheme?

- ► +2K-Ctrl SCM Experiments (s6 CGILS)
- ▶ $|SWCRF| \setminus when \gamma / (because CF_{950mb} decreases)$
- Cloud sensitivity correlated to the present climate

"Tuning" Parameters

"Tuning terms" are parameters which allows us to ajust a climate model for avoiding drifts (zero Net TOA budget) and giving a GCN climate not to far away from the real climate.

Those terms have a impact on many physical mechanisms (convection, clouds, circulation...) : Obvious effect on present climate.

EUCLIPSE Meeting (Utrecht): What about climate sensitivity?

Using 1D model with s6 CGILS experiments allows us to test the influence of each of those parameters. Three are selected:

- \triangleright Sub-grid scale cloud parameterization (γ)
- ▶ Impact on Liquid Water Content (LC1 and LC2)

GCM sensitivity to cloud LWC?

Tuning of precipitation efficiency depending of two LWC parameters :

$$(rac{\partial q}{\partial t})_{precip} = rac{q_{cond} - q_{crit}}{ au}$$

- ► A LWP constant which defines a threshold of precipitation (LC1)
- ► A time constant for the elimination of liquid water content by precipitation (LC2)

4□ > 4ⓓ > 4ಠ > 4ಠ > □
9<</p>

LC1 \nearrow : More LWC for a defined cloud fraction (threshold increases, less precipitation) LC2 \nearrow : More LWC for a defined cloud fraction (precipitation efficiency decreases)

GCM sensitivity to cloud LWC?

- Precipitation efficiency influences present-day low cloud fraction
- ► Cloud sensitivity highly correlated to the cloud fraction in the present climate.
- What processes are involved in this mechanism?

Radiative feedback

- Total Radiative cooling(z) = Clear-Sky Radcool(z) + βCRF_{atm}(z)
- ▶ β =1 if Control (test β = 0)

Radiative feedback (1D)

Positive radiative feedback between LW radiative Cooling, Temperature, Relative Humidity and Cloud (so-called β feedback)

Radiative feedback (1D)

- ▶ Decreasing Precipitation efficiency (LC \nearrow) enhances β feedback
- ► Always Positive cloud feedback to a global warming (robust mechanism): SCM experiments gives a linear relation
- ► Are s6 CGILS sensitivity tests able to anticipate, 3D feedback ?

Summary of 1D results

- ▶ Decreasing Precipitation efficiency (LC \nearrow) enhances β feedback
- ► Always Positive cloud feedback to a global warming (robust mechanism): SCM experiments gives a linear relation
- ► Are s6 CGILS sensitivity tests able to anticipate 3D feedback?

Application on 3D aquaplanet

- ▶ Blue Square : A +4K-Ctrl aquaplanet experiment for $w_{500} = 20$ hPa/day
- ▶ 3D on the same linear relation than SCM experiments
- ► s6 CGILS allows us to anticipate GCM cloud feedback sensitivity on "tuning" parameters

Application on 3D aquaplanet

- ▶ Blue Square : A +4K-Ctrl aquaplanet experiment for $w_{500} = 20$ hPa/day
- ▶ 3D on the same linear relation than SCM experiments
- ► s6 CGILS allows us to anticipate GCM cloud feedback sensitivity on "tuning" parameters

Application on 3D aquaplanet

- ▶ Blue Square : A +4K-Ctrl aquaplanet experiment for $w_{500} = 20$ hPa/day
- ▶ 3D on the same linear relation than SCM experiments
- ► s6 CGILS allows us to anticipate GCM cloud feedback sensitivity on "tuning" parameters

Conclusions

- ▶ The s6 CGILS experiments with a ω -stochastic forcing allows us to anticipate the tropical mean cloud feedback seen in the GCM (focus on a subset of paramaters which has a local physical influence)
- Linear relation between the present-day cloud fraction and the cloud sensitivity in our model.
- ▶ Boundary Layer positive radiative feedback between LW radiative cooling, RH and Cloud (β feedback) responsible of this relation
- ▶ β feedback contributes to the strong amplitude of the positive cloud feedback in the IPSLCM5a model

Thank You