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* GCM disagreement is largest for low clouds
— because low clouds depend sensitively on small-scale
processes which are hard to parameterize
* Problems due to cloud physics, not dynamics (?)
— dynamics better resolved than cloud physics

— Cloud changes are dominated by thermodynamic rather than
dynamic changes (e.g. Bony et al, Clim Dyn 2004)

Hypothesis: a limited area model forced by output
from various GCMs will produce more consistent,
physically-defensible low-cloud changes.




Approach:

Mixed Layer Model (MLM)
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GCM output model forcing for each day JClim 2009)

Benefits: 1. MLM is simple and easy to interpret
2. Existent local model studies do not assess forcing uncertainty or variability

» exception=Lauer et al (JClim 2010) regional model forced by 3 GCMs




Model Validation:

When forced by ERA40 for 1990-2001, this approach reproduces the observed
geographical distribution of cloud and the observed low-cloud vs. LTS relationship
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Forcings from GCMs

ERA-Interim RH for DJF 2006 with Predicted Inversion Top
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Compiling MLM forcings from GCM data is generally easy but:

1. Free-tropospheric boundary conditions require inversion height estimation since
BL depth changes with time (see graphic)

2. VSST and V q,(SST) are good predictors of T and q gradients; BL depth
advection is not computable, veV z=0.49mm/day is assumed

3. Subsidence is computed assuming constant divergence (using 10m winds)



Forcing Changes

Do GCMs produce expected/consistent forcing changes?
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Results: Current-Climate

Does the MLM improve current-climate prediction?
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Results: Current Climate

Do the models capture the observed stability/cldfrac relation?
20c3m LCF vs. EIS
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*MLM dcld/dEIS across models, regions, and seasons is very good

*GCMs results are poor because of low regional, seasonal variation



Results: EIS as a Climate-Change Predictor

Does the observed EIS/cldfrac relation explain future change?
sresalb vs. 20c3m
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* EIS is a better predictor for GCMs when averaged over region, season (not shown)

* Current-climate dcld/dEIS slope is a poor predictor of future climate



A MLM Low Cld Frac

Results: MLM vs GCM cldfrac

Does the MLM alter our predictions of low cloud change?
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Imprinting

Do models with less low cloud have conditions which
discourage low cloud in the MLM?
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Conclusions

1. The MLM captures seasonal and regional
cldfrac differences which CMIP3 GCMs miss

2. Interpreting GCM results through a MLM
does reduce inter-model spread

3. GCM low cloud bias does not imprint onto
the MLM



Future Directions:

Examine other variables (LWP, PBL depth, etc)

Explore (lack of) connection between MLM and
GCM results

ldentify aspects of GCM forcings which lead to
spread in MLM results (through sensitivity tests)

Check if results for CMIP5 are similar



contact: caldwell19@IlInl.gov







Forcings from GCMs

1. BL depth changes so free-tropospheric (FT) values can’t come from a given level.

RH (%)
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2. Horizontal advection is unavailable from CMIP data or simple models.

*Testing with ERA-Interim suggests that using V SST and V q(SST) works quite well
*Advection of BL height is challenging and we ended up using v*V z=0.49mm/day

3. Daily-resolution subsidence is also not available
*Subsidence is computed assuming constant divergence (calculated from 10m winds)




Forcing: Changes in Daily Variability
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Forcing Changes

Is inter-model forcing variability *actually* less than

cldfrac variability?

nge typical climate change noise

Inter-model variability in Clim
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 GCMs differences in cldfrac
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= Inter-model spread in GCM-
predicted cloud is generally
bigger than spread in forcings



Imprinting
Is the change in forcing variables controlled by
the change in cloud fraction?
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Model Validation

MLM theory based on short timescales so model should have skill at these scales. Does it?

MLM LCF versus ISCCP
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Mixed layer model forecast ability

MLM LCF versus ISCCP
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Results: EIS as a Predictor — Averaging
Effect

sresalb vs. 20c3m @ Peru with annual mean
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GCM skill improves when seasonal and regional
differences (which are generally not captured) are
removed.



Present-Day Mean Low-Cloud Skill
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Climate Change signal in BL depth

- s GCM BL depth

A zi (m)

Namibia . .
w0l Peru _ INncreases In mMost
California
| models, regions.
00| Australia
H]nliiﬂ HI .H]
° "JL TD'
?°I
@Q‘? ) Q‘fb (90 »7 &b\ ({\\\;og' &\‘0/ (5\“0 @&o&} \(;q&m’
é\« @ é‘@ &

Change in diagnosed inversion height from
CMIP3 models (2080-2100 vs 1980-2000)



A RH (%)

RH Changes — Methodology Choice
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MLM LCF conditioned on joint PDF of LTS and Divergence

MLM cloud
fraction is largely
set by LTS and div
(since colors
invariant)

— cloud changes
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MLM cloud fraction (colors) and joint PDF of monthly mean LTS

and divergence (contours) for California region.
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LCF change (%)
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What determines a Model’s low cloud
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over other quantities), while other
factors reduce cloud.

*Mean cloud fraction is not a strong
indicator of cloud change or whether it
can be explained by EIS and div or not.



What Determines Inter-Model Spread
for Current climate MLM cldfrac
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low clouds are that way
because of different EIS,div
occurrence. More average
models have differences
explained by other factors.



GCM Total vs Low Cloud for Sc regions
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*GCM total cloud = random-overlap low cloud for 3 of the
5 models where this can be checked



