

EUCLIPSE radiation intercomparison study for stratocumulus

S. Dal Gesso, P. Siebesma, R. Neggers, S. de Roode KNMI, Royal Netherlands Meteorological Institute TUD, Delft University of Technology

I. Beau, P.Blossey, A. Cheng, J. van der Dussen, A. Lock, J. Manners, P. Wang

9 June 2011 EUCLIPSE/CFMIP/GCSS meeting

EUCLIPSE radiation intercomparison study for stratocumulus

S. Dal Gesso

Introduction and motivations

1

From Pacific to Atlantic ocean

Greuell et al. 2011

Scientific questions

- 1. How large is the spread in broadband shortwave albedo calculated by the different radiation codes for the marine stratocumulus topped boundary layer?
- 2. Do more sophisticated radiation codes provide albedos closer to the observations?
- 3. How critical are the assumptions on the internal microphysics for the radiative properties of stratocumulus clouds?

Outline

- models simulations set-up;
- description of the dataset;
- results;
- conclusions and outlook.

Simulations set-up

For further details: http://www.euclipse.nl/wp3/Radiation_Intercomparison/Introduction.shtml gesso@knmi.nl

< ∃ >

Dataset description

Conclusions

Simulations set-up

Position: LAT=14.S
_ON=6.5E
Duration: one time step 11.30
JTC (local noon)
Date: 15 July 2006

EUCLIPSE radiation	intercomparison	study for stratocumulus	
--------------------	-----------------	-------------------------	--

solar constant (W/m^2)	1325.8
cos zenith angle	0.813
albedo (-)	0.026
<i>p₅</i> (hPa)	1017.
SST (K)	288.4

< 一型

Ξ.

Introduction	Model simulations set-up	Dataset description	Results	Conclusions

Initial conditions

∢ 臣 ≯

Initial conditions

э

注入 不注入

< 17 ▶

Introduction	Model simulations set-up	Dataset description	Results	Conclusions
Microphys	sics			

SET A: operational set-up

≪ ≣ ⊁

Introduction	Model simulations set-up	Dataset description	Results	Conclusions
Microphys	ics			

- SET A: operational set-up
- ► SET B: constant effective radius: r_e = 9µm (according to SEVIRI)

$$\tau = \frac{3}{2} \frac{1}{\rho_l r_e} \int_{0}^{+\infty} \rho_a(z) q_l(z) dz$$

no inhomogeneity

< E >

Introduction	Model simulations set-up	Dataset description	Results	Conclusions
Microph	ysics			

- SET A: operational set-up
- SET B: constant effective radius: r_e = 9µm (according to SEVIRI)

$$\tau = \frac{3}{2} \frac{1}{\rho_l r_e} \int_{0}^{+\infty} \rho_a(z) q_l(z) dz$$

no inhomogeneity

► SET C: constant cloud droplet number concentration: $N_c = 200.$ cm⁻³ (so that $r_e = 9\mu m$ at cloud top)

$$\tau = \left(\frac{9}{2}\pi N_c \rho_l^{-2}\right)^{1/3} \int_{0}^{+\infty} (\rho_a(z)q_l(z))^{2/3} dz$$

no inhomogeneity

EUCLIPSE radiation intercomparison study for stratocumulus

★ ∃ →

Dataset description

<u>Area</u>: 3-10 E and 12-16 S divided in $50 \times 50 \ km^2$. <u>Time</u>: 4 measurements between 11.00 - 12.00 UTC. <u>Date</u>: July 2006.

- GERB: radiative fluxes and albedo;
- SEVIRI: cloud cover, optical thickness and effective radius;
- OMI: aerosol index.

▶ just stratocumulus clouds: CC = 1.

- ▶ just stratocumulus clouds: CC = 1.
- ▶ to exclude icy clouds: phase = 1.

- just stratocumulus clouds: CC = 1.
- ▶ to exclude icy clouds: phase = 1.
- ▶ in order to reduce horizontal inhomogeneity: $\sigma_{\tau}/\overline{\tau} \leq 0.3$ and $\sigma_{LWP}/\overline{LWP} \leq 0.3$

- just stratocumulus clouds: CC = 1.
- to exclude icy clouds: phase = 1.
- ▶ in order to reduce horizontal inhomogeneity: $\sigma_{\tau}/\overline{\tau} \leq 0.3$ and $\sigma_{LWP}/\overline{LWP} \leq 0.3$
- \blacktriangleright in order to minimize the absorbing aerosol amount: aerosol index ≤ 0.5

Aerosol optical thickness

Global summaries of aerosol optical thickness from the Multi-angle Imaging SpectroRadiometer (MISR)

NASA Langley Atmospheric Sciences Data Center

Effective radius effect

Participants

Participant	Model	Scheme
I. Beau (Meteo France)	ARPEGE (SCM)	Fouquart-Morcrette
P. Blossey (Washington University)	SAM (LES)	RRTMG
A. Cheng (SSAI, Inc./ LaRC, NASA)	LaRC (SCM)	Fu-Liou
S. Dal Gesso (KNMI)	Ec-Earth (SCM)	Fouquart-Morcrette
J. van der Dussen (TUD)	DALES (LES)	RRTMG
J. van der Dussen (TUD)	DALES (LES)	Fu-Liou
A. Lock (Met Office)	Met Office LEM (LES)	Edwards-Slingo
J. Manners (Met Office)	stand-alone (HadGEM3)	Edwards-Slingo
J. Petters (UCSC)	UCSC LES (LES)	СКD
P. Wang (KNMI)	stand-alone	DAK
W. Grabowski (NCAR) D. Klocke (ECMWF-MPI) M. Lefrebvre (LMDZ) R. Pincus (NOAA) B. Stevens (MPI)	(SCM) (SCM) (LES) (LES)	

Conclusions

Albedo for clear sky case

< 17 ▶

Conclusions

Set A: operational set-up

Participant	Scheme	$r_e(\mu m)$	inhomogeneity factor
ARPEGE (SCM)	Fouquart-Morcrette	Martin et al. 1994	0.7
SAM (LES)	RRTMG	14.	-
LaRC (SCM)	Fu-Liou	10.	0.7
Ec-Earth (SCM)	Fouquart-Morcrette	Martin et al. 1994	0.7
DALES (LES)	RRTMG	14.	-

-≣->

Dataset description

Conclusions

Set A: operational set-up

Set B: constant $r_e = 9\mu m$ (no inhomogeneity)

Set C: constant $N_c = 200. \text{cm}^{-3}$ (no inhomogeneity)

Conclusions and outlook

Comments:

✓ spread in broadband albedo due to two factors:

- ✓ set A: conversion from physical properties to optical properties
- set B and C: difference in parametrization factors (single scattering albedo, asymmetry factor,...)
- ✓ CDK, RRTMG and DAK give similar results
- ✓ Fu-Liou gives higher albedo with respect to RRTMG
- Ec-Earth underestimates the albedo...

Conclusions and outlook

Comments:

✓ spread in broadband albedo due to two factors:

- \checkmark set A: conversion from physical properties to optical properties
- ✓ set B and C: difference in parametrization factors (single scattering albedo, asymmetry factor,...)
- CDK, RRTMG and DAK give similar results
- ✓ Fu-Liou gives higher albedo with respect to RRTMG
- ✓ Ec-Earth underestimates the albedo…
- Open questions and outlook:
 - ⇒ in order to compare observations and model results: which are the best constraints?
 - ⇒ what about inhomogeneity? Is it necessary a set D?

Introduction	Model simulations set-up	Dataset description	Results	Conclusions

For further informations:

http://www.euclipse.nl/wp3/Radiation_Intercomparison/Introduction.shtml gesso@knmi.nl

Acknowledgements

Wouter Gruell's and Jan Fokke Meirink's help in setting up the case and providing the satellite data is gratefully acknowledged.

Sensitivity to vertical resolution

Diurnal cycle of Liquid Water Path over the stratocumulus [10oS-20oS, 0-10oE] domain, in Feb 2009. The Red line represents observations from the TMI instrument and the black line retrievals from SEVIRI with the CPP algorithm.

Courtesy of Seethala Chellappan (MPI)

Conclusions

S. Dal Gesso

Sensitivity to vertical resolution

Relationship between OMI aerosol index versus Liquid Water Path Aug 2008. The Red line represents observations from the TMI instrument and the black line retrievals from SEVIRI with the CPP algorithm.

Courtesy of Seethala Chellappan (MPI)

Sensitivity to vertical resolution

