Introduction	Transpose AMIP 00	Case of study O	LMDZ and the SCM	Results 000000	Conclusions and Future work

Evaluation of the IPSL climate model in a weather-forecast mode CFMIP/GCSS/EUCLIPSE Meeting, The Met Office, Exeter 2011

Solange Fermepin, Sandrine Bony and Laurent Fairhead

LMD/IPSL

LMD/IPSL

Evaluation of the IPSL climate model in a weather-forecast mode

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results 000000	Conclusions and Future work

- We need to identify systematic biases in the physics of General Circulation Models (GCMs) to guide model development.
- We need to evaluate climate models in configurations where the dynamics is well constrained.
- A classical approach \rightarrow Single Column Model (SCM) simulations:

- One column integration of model physics forced by observed large scale dynamical forcings.
- Limited number of locations.
- Another approach \rightarrow **Transpose AMIP simulations**:

- Global short term integrations.
- GCM initialized from a very well defined state (reanalysis).

Motivation: to identify errors in the model physics and their influence on the model dynamics.

An example: RELATIVE HUMIDITY errors in LMDZ, 15-Oct-2008 day1-Fc. day2-Fc. day3-Fc. day4-Fc. day5-Fc.

Evaluation of the IPSL climate model in a weather-forecast mode

An example: RELATIVE HUMIDITY errors in LMDZ, 15-Oct-2008

An example: RELATIVE HUMIDITY errors in LMDZ, 15-Oct-2008

Introduction	Transpose AMIP 00	Case of study ●	LMDZ and the SCM	Results 000000	Conclusions and Future work
TOGA-COARE					

Case of study: TOGA-COARE

Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment

- From 1992-Nov-01 to 1993-Feb-28
- ^a Comprehensive observational Dataset
- Wester Pacific Warm pool
- Intensive Flux Array (IFA) (155E, 2S)

LMD/IPSL

^aCiesielski, et al. (2003)

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results 000000	Conclusions and Future work

SCM

- Single column version of LMDZ
- Location: 155E, 2S
- 39 vertical levels
- SSTs observed
- TOGA-COARE forcings

LMDZ

- Atmospheric component of IPSL climate model
- 3.75×1.87 resolution
- 39 vertical levels
- SSTs prescribed
- ERA Interim for initialization (u,v,r,T,sp) with TOGA obs. assimilated

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ●○○○○○	Conclusions and Future work
Forcings					

Relative Humidity: Observations, Reanalyses and models

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ○●0000	Conclusions and Future work
Model outputs					

Relative Humidity at the IFA: November Bias

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ○●0000	Conclusions and Future work
Model outputs					

Relative Humidity at the IFA: November Bias

Evaluation of the IPSL climate model in a weather-forecast mode

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ○0●000	Conclusions and Future work
Model outputs					

Relative Humidity and Vertical Velocity at the IFA

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ○00●00	Conclusions and Future work
Model outputs					

Relative Humidity time series at the IFA

Pierre Simon Laplace

Evaluation of the IPSL climate model in a weather-forecast mode

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ○000●0	Conclusions and Future work
Model outputs					

Zonal Wind at the IFA

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results ○0000●	Conclusions and Future work
Model outputs					

Precipitation: November average errors (mm/day)

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results 000000	Conclusions and Future work

So far...

• Some model biases appear early in the Transpose-AMIP simulations and amplify very quickly over the first few days of integration.

• First day Transpose AMIP forecasts show good agreement with Single Column Model simulations as expected, since in both cases the dynamics is well constrained.

• By the fifth day of integration, the errors in Transpose AMIP simulations resemble the climatological errors in the model, showing that Transpose AMIP approach allows us to study the influence of dynamics errors on the physics of the model.

Introduction	Transpose AMIP 00	Case of study 0	LMDZ and the SCM	Results 000000	Conclusions and Future work

...for the future

• Transpose AMIP will be used to study the influence of the representation of clouds on the large scale dynamical biases.

• It will also be used to study the resolution sensitivity of the parametrization of convection in the LMDZ model.

Thank you!

