08Jun2011 CFMIP meeting @ Exeter

An Assessment of Cloud Properties Simulated by NICAM Using ISCCP, CALIPSO and CloudSat Satellite Simulators

C. Kodama¹, A. T. Noda¹, and M. Satoh²¹ 1:Japan Agency for Marine-Earth Science and Technology 2:The University of Tokyo

What is NICAM

 Nonhydrostatic ICosahedral Atmospheric Model for Global Cloud-Resolving Simulations Tomita and Satoh, (2005); Satoh et al. (2008)

MTSAT-1R IR vs. NICAM 3.5km OLR Miura et al. (2007) Visit http://nicam.jp/ for more beautiful pictures.

NICAM ~ Nonhydrostatic ICosahedral Atmospheric Model

Resolution	Horizontal: 14km (cloud resolving mode) Vertical: 40 layers, 80m~2.9km interval (stretch) up to 40km
Integration	2004.06.01 - 2004.10.31 (5 months)
Cloud Microphysics	NSW6 (6-category, 1-moment; Tomita 2007)
Cumulus Convection	No Parameterization
PBL	MYNN2.0 (Nakanishi & Niino 2006, Mellor & Yamada
Surface flux	Louis (1979)
Land Process	MATSIRO (Takata et al. 2003)
Ocean	1-layer slab ocean + nudging ($T = 5$ days)
Radiation	MSTRNX (Sekiguchi & Nakajima, 2008)
Aerosol	No (but available)

Satellite Simulator & Data

- COSP (CFMIP Observational Simulator Package) v1.3
 - Bodas-Salcedo et al. (2008)
 - ISCCP (Klein and Jakob, 1999; Webb et al. 2001)
 - CALIPSO (Chepfer et al. 2008)
 - CloudSat (Haynes et al. 2007)
 - For CALIPSO and CloudSat, every 4 points in lon. and lat. directions are analyzed to reduce computational costs.
 - Cloud resolving mode
- Satellite Data
 - ISCCP (Rossow and Schiffer, 1999): JJA 2004
 - CALIPSO-GOCCP (Chepfer et al., 2009) : JJA 2006-2008
 - CloudSat (Zhang et al. 2010) : JJA 2006-2010
- Def. of cloud fraction follows those used in the satellite data.

CALIPSO / CloudSat CFAD (Global)

CALIPSO

Targeted Regions

CALIPSO / CloudSat CFAD (Off the California)

CALIPSO / CloudSat CFAD (North Pacific)

CALIPSO

13

CloudSat

Sensitivity Experiments

- Too much sub-visible thin cirrus!
 Too much cloud ice!
- Auto-conversion from cloud ice q_i to snow q_s

 $P_{SAUT} = \beta_1 (q_i - q_{icrt}) \quad [g/(kg s)]$ (if $P_{SAUT} < 0$, $P_{SAUT} = 0$)

 $-q_{icrt} = 0, 0.001, 0.005 \text{ (control)}, 0.01, 0.1 [g/kg]$

- Fall of cloud ice
 - no (control) or yes

 $-q_{icrt}=0$

 $V_t = 3.29 \, (\rho q_i)^{0.16}$

Heymsfield and Donner [1990]

10-day integration last 5-day mean

CALIPSO Cloud Fraction for 6-10th days [%] : $q_{icrt} \rightarrow$ 15 smaller

Zonal Mean CALIPSO / CloudSat Cloud Fractions

 $q_{icrt} = 0.005$, no fall ^{so c} 6-10 [% $q_{icrt} = 0$, no fall $q_{icrt} = 0$, fall (c) 18000 18000 18000 60,70 16000 16000 16000 14000 14000 14000 12000 12000 12000 **CALIPSO** 10000 10000 10000 8000 23 8000 8000 6000· 6000 6000 4000 4000 4000 2000 2000 2000 E/ EQ 90S 60S 3ÓS EQ 3ÓN 60N 90S 6ÓS 3ÓS EQ 30N 90S 6ÒS 3ÓS 3ÓN 60N 90N 9ÓN 6ÓN 9ÓN 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 CloudSat Cloud Fraction for Days 6-10 [%] (a) (gicrt=0.005, 3water) (gicrt=0, 4water) (gicrt=0, 3water) (b) (c) 18000 18000 18000 16000 16000 16000 14000 14000 14000 12000 12000 12000 CloudSat 10000 10000 10000 8000 8000 8000 6000 -50 6000 6000 4000 4000 4000 2000 2000 2000 50 60× 60 30N 60N 30S 30N 60N 30S 3ÓS EQ 90N 6ÓS 6ÒS EQ 30N 60N 90S 6ÒS 90S EQ 9ÓN 90S 9ÓN 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Summary

- Satellite obs. vs. NICAM+COSP
 - High cloud: overestimated (esp. thin cloud), higher cloud top
 - Middle cloud: underestimated
 - Low cloud: good
 - Precipitation: overestimated
- Sensitivity experiments
 - greater conversion from cloud ice to snow
 - fall of cloud ice
 - · · · both reduce high cloud & cloud top height
- Future

- higher horizontal resolution, specific phenomena, ...

ls_cldlayer_night_JJA.png

ls_cldlayer_day_JJA.png

26 Lidar Cloud Fraction (High Cloud) Lidar Cloud Cover for Jul [%] - High Cloud (200406.new (only qs)) (200406.new (all)) 90N 90N 60N 60N 0.00 69 30N 30N EQ EQ ത 30S -30S 60S 60S · 905 |__ 90S 120W 00 20 40 60 80100 120E 180 120W 60W 00 20 40 60 80100 60E 120E 180 60W 6ÓE (200406.new (only qi)) (200406.new (only qg)) 90N 90N 60N 60N -69 0.00 30N 30N EQ EQ 30S · 30S 60S · 60S · 905 |__ 90S -00 20 40 60 80100 60E 120W 60W 120E 120W 60W 00 20 40 60 80100 60E 120E 180 180 (200406.new (only qc)) (200406.new (only qr)) 90N 90N 60N 60N -6.01 0.00 30N 30N EQ EQ 30S 30S 60S 60S -90S 90S -12'0W 6ÓE 6ÓW 6ÒE 120E 120W 6ÓW 120E 180 00 20 40 60 80100 Ó 180 00 20 40 60 80100 0

rs_radarcld_1200m_m25_JJA.png

rs_radarcld_1200m_m30_JJA.png

Temperature

Eulerian Circulation

MIM Circulation

Zonal Mean Precipitation

Precipitation

OLR (JJA)

OSR (JJA)

Longwave Cloud Forcing (JJA)

Shortwave Cloud Forcing (JJA)

isccp_matrix_AR5_7x7_JJA.png

ISCCP Cloud Fraction [%] for JJA (ISCCP obs. (D1))									ISCCP Cloud Fraction [%] for JJA (200406.new)							
		5.37	0.70	0.21	0.28	0.52	0.20		25.25	11.04	2.63	0.45	0.08	0.10	0.19	
Middle High		1.37	1.88	0.95	1.39	1.05	0.19	Low Middle High	2.90	2.05	1.33	0.95	0.95	0.78	0.62	
		1.01	3.15	1.53	1.75	0.95	0.18		0.26	0.58	0.89	1.42	1.61	1.00	0.51	
		1.47	2.23	1.69	1.76	0.92	0.27		0.21	0.47	0.81	1.36	1.80	1.05	0.50	
		1.44	2.02	2.22	1.92	0.93	0.35		0.19	0.51	1.12	1.94	3.00	1.39	0.41	
Low		1.39	2.80	4.28	3.04	0.89	0.25		0.10	0.34	1.34	3.04	4.19	1.31	0.22	
		1.72	4.54	4.10	1.32	0.28	0.09		0.09	0.10	0.43	1.74	3.90	0.76	0.02	
Invis		Thin		Medium		Thick			Invis	Thin		Medium		Thick		

Zonal Mean ISCCP Visible Cl他のPPAを他形の扱いが違うので注

Low level stability

(Sensitivity Experiments)

lat_lev_t_diff.png

lat_lev_mim_st_diff.png

lat_lev_rh_diff.png

lat_lev_qv_diff.png

lat_lev_qc_diff.png

lat_lev_qi_diff.png

lat_lev_qr_diff.png

lat_lev_qs_diff.png

lat_lev_qg_diff.png

rad_osr_toa.png

isccp_gm_evolution_vis.png

ls_cldlayer_evolution.png

rs_radarcld_peak_1.png

rs_radarcld_peak_2.png

rs_radarcld_peak_3.png

Summary of the sens. exp.

		ISCCP			CALIPSO			CloudSat	
	High	Middle	Low	High	Middle	Low	High	Middle	Low
qicrt0.1-3water	72.84	6.56	5.46	81.15	3.22	16.09	73.67	22.07	32.42
qicrt0.01-3water	37.69	14.34	14.16	67.97	5.89	34.18	38.18	21.82	35.12
qicrt0.05-3water	25.88	12.70	17.39	61.94	6.89	35.36	32.53	21.72	35.41
qicrt0.001-3water	19.87	10.65	20.29	39.25	7.53	35.95	31.36	21.76	35.35
qicrt0-3water	18.82	10.15	21.22	32.60	7.42	36.16	31.05	21.87	35.63
qicrt0-4water	13.65	10.05	22.75	23.58	8.18	36.55	24.07	21.06	35.36

Table 2. Global mean cloud fractions for each sensitivity experiment [%].

ls_cldlayer_JJA.png

