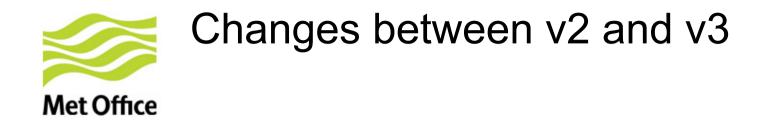


Met Office SCM results from CGILS:

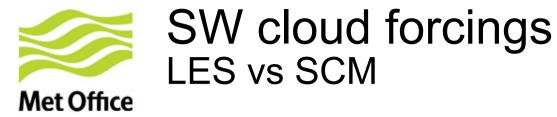

a positive feedback driven by evaporatively-driven cloud-top entrainment?

Adrian Lock and Mark Webb, Met Office, UK


© Crown copyright Met Office

- Direct comparison of SCM with LES
- Steady vs transient forcing
- An evaporatively-driven feedback?
- Conclusions and further work

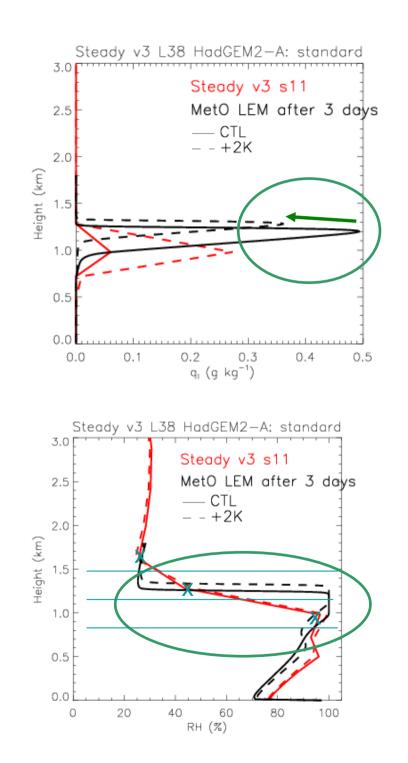
- Using AR5 GCM (HadGEM2) physics, except:
 - Fixed RH_{crit} profile (cf GCM: Cusack et al (1999) parametrization)
 - Fixed cloud droplet number (100cm⁻³, as for the LES)
- CGILS forcings used:
 - "v2" = standard steady forcing for SCMs (July 2010)
 - "v3" = initial mixed layer and revised steady forcing (as used by LES, Dec 2010)
- Compare v3 with LES


- Only for s11 and s12, motivated by LES
- Start with well-mixed stratocumulus layer
 - has no impact on SCM equilibrium
- Small adjustments to horizontal advection forcing above the PBL
- s12 only: reduce subsidence by 5%, impose min q_v above PBL
- LES now generally in agreement making SCM comparison worthwhile...

SW cloud forcings LES vs SCM

	LES			S	SCM v	2	SCM v3		
	Ctl	+2K	Δ	Ctl	+2K	Δ	Ctl	+2K	Δ
s6	-20 to -30	-20 to -30	0	-20	-20	0	-20	-20	0

- s6: shallow cumulus
 - SCM very similar to LES
 - very little cloud response



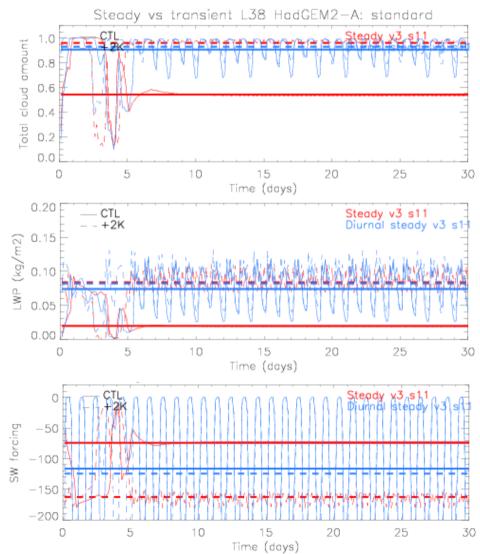
	LES v3				SCM v2			SCM v3		
	Ctl	+2K	Δ	Ctl	+2K	Δ	Ctl	+2K	Δ	
s11	-150 to -160	-150	0 to +10	-30	-20	+10	-75	-160	-85	
s12	-130 to -150	-130 to -150	-5 to +20	-95	-80	+15	-110	-50	+60	

- SCM gets same cloud regimes as LES
 - s11: stratocumulus over cumulus
 - s12: well-mixed stratocumulus
- SCM SW cloud forcing generally underdone
 - SCM very sensitive to LS forcing, even in the sign of response at s11!

- LES suggest feedback is caused by small (100-200m) rise in inversion and resulting change in cloud-top water content
- Very hard for a SCM to capture this small change robustly
 - eg might depend on position of inversion relative to grid in the control
 - Higher vertical resolution would help
- How relevant is this to the GCM?
 - Run an ensemble of SCM or transient forcing...

- Steady state forcing, especially mean diurnal SW, is unrealistic
 - expect large diurnal cycle of LWP and hence SW cloud forcing
- So introduce the diurnal cycle to v3
 - permanent 15th July so time mean forcing unchanged, hence no drift in free tropospheric profiles
- Focus on s11 stratocumulus over cumulus point
 - s12 stratocumulus point similar

Diurnal forcing

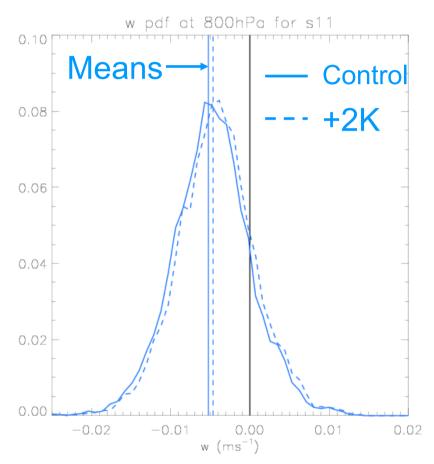

CTL

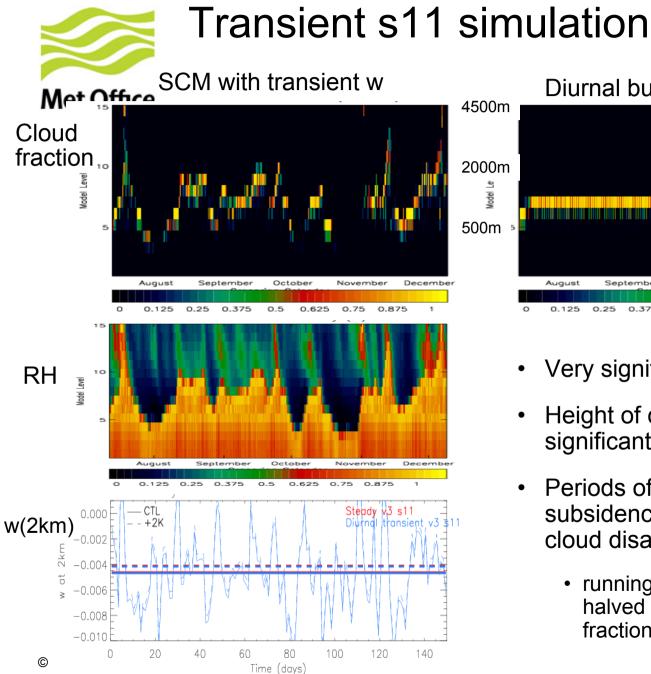
– – +2K

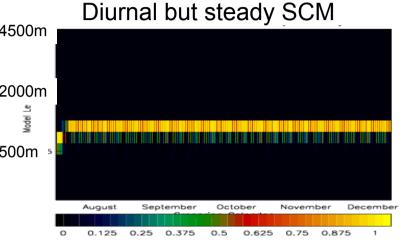
s11

Thick lines are time-mean

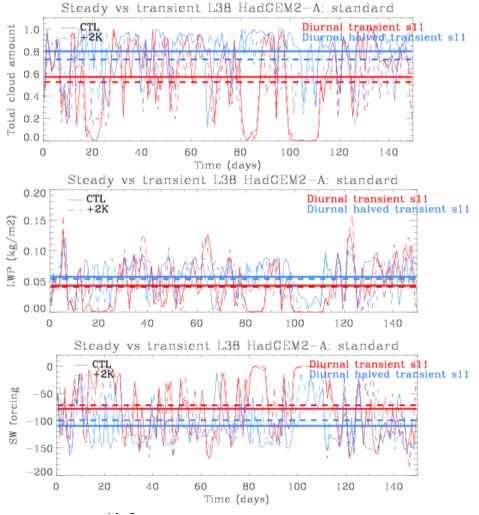
- SCM shows realistic diurnal cycle of cloud with diurnally varying SW compared to steady diurnal mean SW
- Magnitude of SW response reduced very significantly by including diurnal cycle:
 - -85 Wm⁻² with diurnal mean
 - -10 Wm⁻² with diurnal cycle

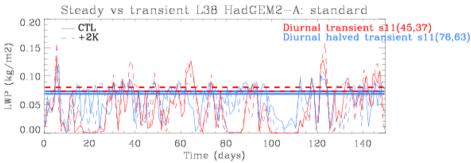


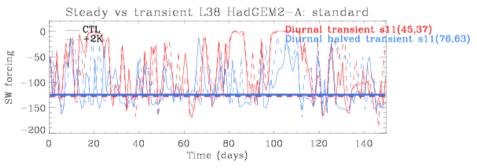



Transient forcing (2)

- Including the diurnal cycle doesn't induce significant perturbations in the gross features of the PBL
 - eg its depth relative to the SCM grid
- Use Minghua's transient forcing
 - time variation of w taken from GCM (ERA?) and imposed in CGILS, keeping time-mean w profile fixed
 - assume variability is the same in +2K and control
 - keep diurnal cycle
 - focus on s11 stratocumulus over cumulus point

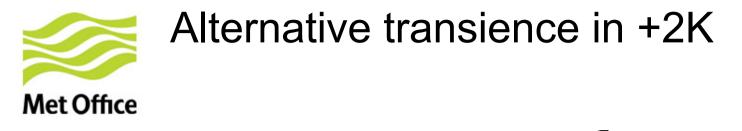



- Very significant w variation
- Height of cloud layer now varies significantly
- Periods of sustained high subsidence squash the PBL and cloud disappears
 - running with w standard deviation halved gives higher mean cloud fraction...


Transient forcing at s11

s11 (thick lines are time-mean)

- Halving w std deviation gives more persistent cloud but very similar SW cloud response
- Subsample time averages on cloud cover > 0.7 (ie. "stratocu")
 - "stratocu" LWP increases in +2K giving (small) negative feedback



SW cloud forcing

Steady and transient simulations

	SCM v3 Ctl +2K △			[diurna +2K		SCM diurnal transier Ctl +2K ∆			SCM diurnal transient/2 Ctl +2K △		_	
s11	-75	-160	-85	-115	-125	-10	-75	-70	+5	-110	-100	+10

- Transient w simulations appear to give a robust small positive SW feedback but...
- "stratocu" SW feedback is negative in transient simulations (due to increase in LWP in warmer climate)
- So overall positive feedback must be dominated by reduction in frequency of occurrence of stratocu
- But absence of stratocu correlates with strong subsidence events
- Implies assumptions about (lack of) change in transience in perturbed climate are important...

- Scale the std dev of w with the mean w, ie fix $\frac{\sigma_w}{w}$
 - very slightly reduces the magnitude of the w variations in the +2K simulation

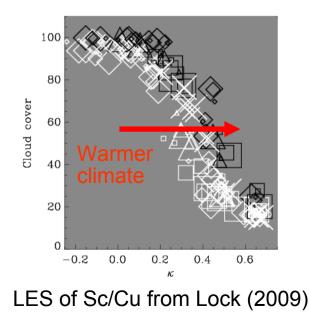
	SCM di	urnal tra	nsient	SCM diurnal transient/2			
	Ctl +2K △		Ctl +2K		Δ		
s11	-75	-70	+5	-110	-100	+10	
s11 with $\sigma_w^{/w}$ fixed	-75	-80	-5	-110	-110	0	

- Reducing the strength of subsidence events in +2K, in line with the reduction in the mean w, removes the positive feedback
 - ie, the dynamics is important in the cloud feedback

 $\begin{array}{cccc} -0.02 & -0.01 & 0.00 & 0.01 & 0.02 \\ & w \ (ms^{-1}) \end{array}$

A positive feedback driven by evaporatively-driven cloud-top entrainment?

A positive feedback driven by evaporatively-driven cloud-top entrainment


- The UM boundary layer scheme includes an evaporatively-driven entrainment and mixing term which depends on the inversion temperature and humidity jumps
- If, as the climate warms, RH remains constant then the q jump across the inversion will increase (because RH is much larger in the BL):

$$q \equiv RH q_{sat}$$
 so $\frac{dq}{dT} = RH \left. \frac{dq_{sat}}{dT} \right|_{(T,p)}$

- Note that because T is warmer above the inversion, dq_{sat}/dT will be larger there, partially offsetting the RH effect
- Larger (more negative) Δq implies larger κ

$$\kappa \equiv \frac{\Delta \theta_e}{\left(L/c_p\right)\Delta q_t} = \frac{\Delta \theta + \left(L/c_p\right)\Delta q_t}{\left(L/c_p\right)\Delta q_t}$$

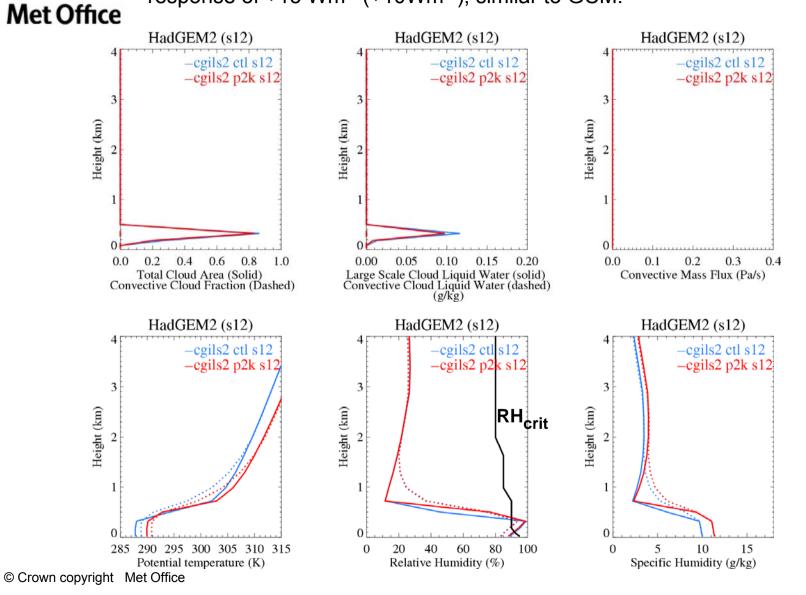
- \Rightarrow more evaporatively-driven entrainment of warm/dry air
- \Rightarrow drier cloud layer with less cloud water
- \Rightarrow positive low cloud climate feedback
- Test in the SCM by disabling this effect...

What of the feedback driven by evaporatively-driven entrainment?

	SCM d	iurnal tı	ransient	SCM diurnal transient/2			
	Ctl +2K ∆			Ctl	+2K	Δ	
s11	-75	-70	+5	-110	-100	+10	
s11 with no evaporatively-driven BL mixing	-90	-80	+10	-110	-112	-2	

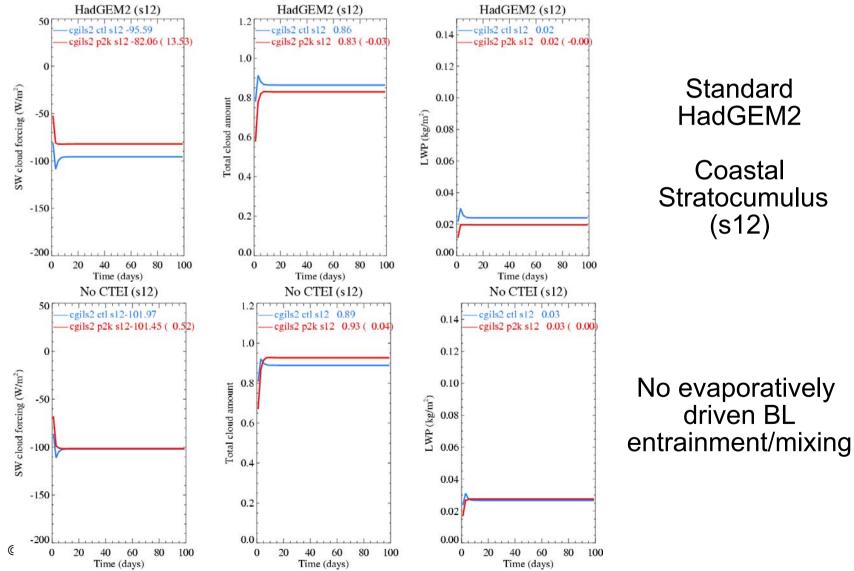
- Disabling the evaporatively-driven mixing in the PBL scheme can reduce the positive feedback, *if the dynamics variability is weakened*
- Not clear whether the dynamics response or local PBL effects would dominate in the GCM
- The same sensitivity test in the GCM gives a null result suggesting the effect of this term is small (in HadGEM2)

- Met Office HadGEM2 SCM reproduces the basic features of the LES in the 3 cloud regimes tested
- SW cloud feedback in SCM *with steady forcing* can be erratic
 - LES suggest cloud changes are subtle
 - Higher SCM vertical resolution should improve this (see HadGEM3...)
- Transient forcing looks realistic
 - Mean SW feedback generally small and positive in SCM (as in steady LES)
 - but in transient SCM this is dominated by reduction in frequency of occurrence of stratocu...
 - ...in turn dependent on details of the w transience
 - How to constrain the change in w variability?
- Evaporative cooling still a potential positive feedback mechanism but apparently small compared to influence of dynamics


- Direct comparisons between CGILS and GCM
 - what is MetO GCM w variability at these points?
 - how does *K* vary in transient CGILS and in GCM?
 - explore other potential feedback mechanisms (eg changes in downwelling LW)
- Test SCM of CGILS using HadGEM3 physics
 - latest Met Office operational NWP global model (for short range to seasonal prediction and development climate version)
 - at higher vertical resolution
 - better present day climatology in stratocumulus regions

© Crown copyright Met Office

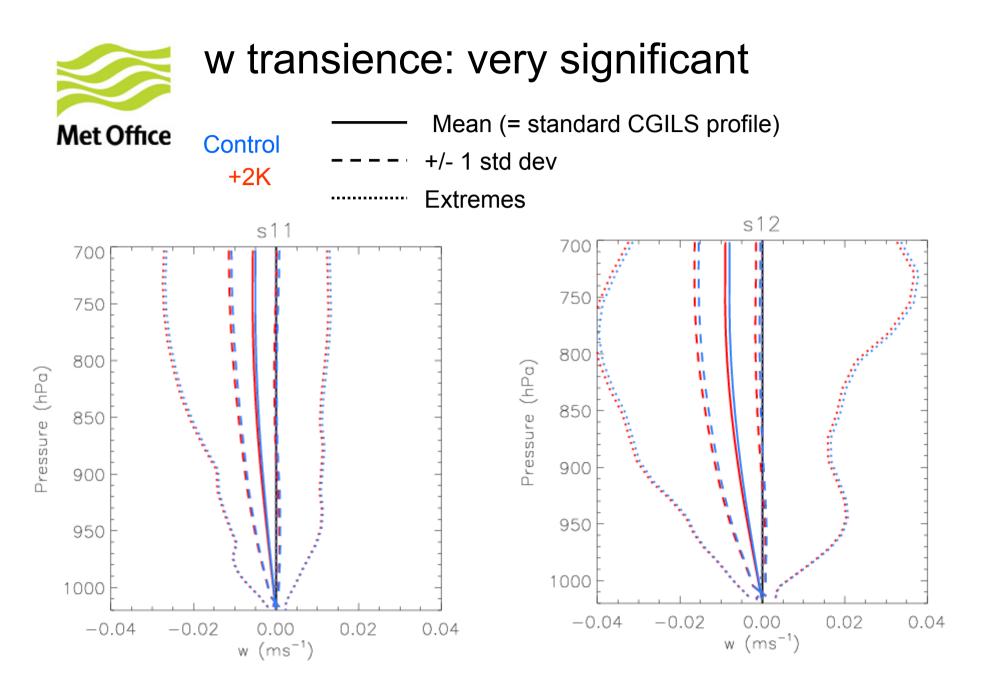
•Where were we in September?


s12 stratocu (s11 Sc/Cu) showed positive SW cloud forcing response of +15 Wm⁻² (+10Wm⁻²), similar to GCM!

•Where were we in September?

disabling evaporatively-driven mixing in the SCM removes the positive feedback

Met Office



Transient s12 simulation

 BL cloud can't cope with magnitude of variability (even with w std dev halved)

