

On behalf of GCSS

Thanks to all the organisers of what looks set to be an excellent meeting.

In particular Mark Webb and Adrian Lock.

Some changes - GASS?

- GCSS and GABLS will work more closely as part of one group – GASS: Global Atmospheric System Studies
- Keep GCSS and GABLS "names" for now as they are well recognised in the community

A community who carry out and use observations, process studies and model experiments with a focused goal of developing and improving the representation of the atmosphere in weather and climate models.

Brining things together – GASS working methods

Active and future projects

- Boundary layer studies
- Boundary layer clouds see this meeting!
- Polar clouds also more this meeting.
- Deep convection TWP-ICE
- The MJO
- Microphysics
- Grey-Zone project (WGNE)

Polar clouds – Hugh Morrison

LES and cloud model intercomparison based on Arctic mixed-phase clouds observed during SHEBA
Paper is currently in press (Morrison et al. 2011; JAMES)

 Follow-up intercomparison study is currently underway (led by Mikhail Ovchinnikov), based on data from the ISDAC Arctic field campaign

- More this week...

TWP-ICE

From a GCSS perspective, this is our first case:

- with ensemble forcing (SCM; CRMs 2D)
- with a comparison of LAMs
- With a land-ocean mix in the domain (represented in the LAMs and NWP models)

WCRP-THORPEX MJO-TF/GCSS model comparison

Seamless modelling of the diabatic heating structures of the MJO during YOTC

Three experimental components are:

- **1. climate simulation** multi-year simulations
 - How well does the model capture the diabatic structures of the MJO?
- 2. short range hindcasts daily 36hr forecasts during ~20 days of the MJO
 - What are the physical tendencies (moisture, heat and momentum) while model is close to analysis?
- 2b (opt) medium range hindcasts several 10 day forecasts
 - How does the MJO spin down

Part 3: the IAA (Intensive Analysis Area)

- High temporal sampling (model timestep?)
- Vertical profiles

Once we learn from the climate models we can design a focused a hierarchical modelling effort.

e.g. CASCADE MJO runs: 2 billion grid points

- Domain: 140° Ion and 40° latitude
- 1.5km resolution (70 levs)

Microphysics

• The KiD model has been upgraded to provide 2-D forcings as well as 1-D (to be released soon).

• Ice-L (wave cloud) case being investigated at Leeds Uni (Dearden) with view to possible intercomparison

- 2-D intercomparison is also a possibility (Hill)
- Moreover, KiD should be considered as a tool to run alongside when developing full model intercomparison cases which may have strong microphysical dependence.

How to parametrize physical processes in the "grey-zone" (1-10km grid lengths)?

- Of interest to
 - Operational mesoscale NWP
 - Many already running at resolutions of a few km but room for more systematic testing to complement existing assessments of parametrization choices?
 - Future global models
 - What to do as global models enter this range?
 - Regional climate models

- Designed to be relevant to and to engage as broad a range of communities as possible
 - Mesoscale modellers
 - Global modellers
 - LES/CRM/parametrization development community (GCSS)
- Case to be run across whole range of resolutions (from convection resolved to fully parametrized)
 - Back diagnose fluxes at different resolutions from high resolution 'truth'
- Idealized case with periodic boundary conditions
- Looking at parallel inflow-outflow option for mesoscale models for which the above is difficult

- There have been some changes to how we organise GCSS/GASS
- However, there is still a large community doing excellent work to support model development under the GCSS/GABLS banner
- Enjoy the meeting

DIAFK Top of atmosphere Atmos outgoing sw rad fluxD(HddA)D Top of atmosphere Atmos outgoing sw rad flux (toa) At 12Z on 31/ 1/2010, from 05Z on 31/ 1/2010 At 12Z on 31/ 1/2010, from 06Z on 31/ 1/2010

Global

Ceres

© Crown copyright Met Office

1.5 km

60

0

90 120 150 180 210 240

Cascade

The diurnal cycle over West Africa (Pearson, Dixon and Parker)

Diurnal Cycle in Frequency of High Cloud (OLR<150Wm⁻²) as a function of size (Area¹/₂)

Large Eddy Simulation (LES) especially has been succesfully applied to study the dynamics of boundary layer clouds, which has led for guidance for improving parameterizations on: *top-entrainment, lateral entrainment and detrainment, mass flux closure, triggering, cloud schemes including cloud microphysics*

Fair weather cumulus

stratocumulus

512^3 grid points

A Pan-GCSS meeting

- Attendees at PAN-GCSS meetings:
 - 1998 Reading : ~ 80
 - 2002 Kananaskis: ~ 100
 - 2005 Athens: ~150
 - 2008 Toulouse: ~235
 - 2012? ????

Toulouse 2008

GEWEX Atmospheric Boundary Layer Study

Enhance understanding and improving representation of boundary-layer processes in weather forecast and climate models

GABLS1	GABLS2	GABLS3
		plee 1G v.1 Viet
LES as reference	Data (CASES99)	Data (CABAUW)
Artificial	I dealized forcings	'Exact' forcings
Prescribed T _s	Prescribed T _s	Coupling with surface
No Radiation	No Radiation	Radiation
Turbulent mixing	Diurnal cycle	LLJ + transitions
LES and SCM	SCM	LES and SCM

(20th century) Working Strategy of GCSS/GABLS

© Crown copyright Met Office

Interest on participation on the Grey Zone Project

	global	Meso Operational	Meso idealised	LES	contacts
MetO	MetO globa Model (p)l	MetO meso model	MetO meso model	MOLEM	Paul Field
Meteo France	Arpege	AROME MesoNH	AROME MesoNH (p)	MesoNH	Bouysel
DWD (MPI-H)	ICON	COSMO-EU COSMO-DE	COSMO-EU COSMO-DE	UCLA- LES	Martin Kohler Axel Seifert
Met Service Canada		Canadian LAM		Canadian LES	Vaillancourt Jason Milbrandt Aytron Zadra Stephan Belair
NCAR		WRF	WRF (p)	WRF(p)	Jim Dudhia
ECMWF	IFS (p)				Anton Beljaars
KNMI		HARMONIE	HARMONIE (p)		Wim de Rooy
TU Delft				DALES	Stephan de Roode
		Alaro	Alaro		J-F Geleyn
JMA Univ. of Tokyo	NICAM	JMA model	JMA model	LES	Kazuo Saito Niino Kimoto

Global Atmospheric System Studies (GASS)

