EUCLIPSE ASTEX and composite stratocumulus to cumulus transition cases

Irina Sandu, Johan van der Dussen, Roel Neggers, Stephan de Roode, Bjorn Stevens LES & SCM participants

Previous GCSS boundary layer cloud studies

FIG. 14. Conceptual diagram of intermediate trade cumulus regime.

ATEX intercomparison, *Stevens et al. (2001)*

Stratocumulus cases (ASTEX, EUROCS-FIRE, smoke cloud)

Cloud top entrainment, turbulent transport (e.g Duynkerke et al. 2004; Bretherton et al. 1999)

Cumulus cases (BOMEX, ARM, ATEX)

Lateral entrainment and detrainment, mass fluxes (e.g Brown et al. 2002; Siebesma et al. 2003)

Stratocumulus-cumulus transition case (ASTEX)

Comparison of SCM results against observations (e.g. Bretherton et al. 1999)

CGILS equilibrium states

Equilibrium states (CGILS)

Cloud-climate feedback for shallow cumulus, stratus and stratocumulus (Zhang and Bretherton 2009)

How well are stratocumulus-cumulus transitions represented in models?

Possible representations of a stratocumulus-cumulus transition from

S12 to S6

Research question for SCMs (Roel Neggers)

To gain insight into model behavior at process-level

What we ask the models to do right, and what often still goes wrong:

Thermodynamic state Moment of cloud breakup Cloud boundaries Cloud vertical structure Cloud & condensate amounts Radiative transfer Transport vertical structure (mass flux, TKE, PDFs) Decoupling Momentum transport Time-development of transition (discrete or smooth?) Stability (numerics)

Many new approaches to model turbulent transport in cloudy

boundary layers

Objective: Store 3D LES fields to provide tailor made statistics for the SCM community

List of SCM participants

Name	Affiliation	Model	ASTEX	Composite cases
Eric Basile	Meteo France	AROME	✓	✓
		ARPEGE-NWP	✓	 ✓
Isabelle Beau	Meteo France	ARPEGE-CLIMAT	✓	✓
Vincent Larson	UWM	CLUBB	✓	×
Sara dal Gesso	KNMI	EC-Earth	✓	~
Roel Neggers		RACMO	✓	✓
Suvarchal Kumar	MPI	ECHAM6	Expected soon	Expected soon
Irina Sandu	ECMWF	IFS cy36r1	✓	✓
Martin Köhler	DWD			
Hideaki Kawai	JMA	JMA	✓	✓
Anning Cheng	NASA LaRC	LaRC	✓	✓
Heng Xiao	UCLA	UCLA-AGCM	✓	✓
lan Boutle	UK Met Office	UKMO	✓	✓

The ASTEX First Lagrangian (June 1992)

- Lagrangian evolution of cloudy boundary layer observed
- Five aircraft flights
- Duration: two days

Observed stratocumulus to cumulus transition during ASTEX

ASTEX transition has not been simulated with LES

Model initialization

- prescribed SST increase
- Large-scale divergence decreases linearly with time

(changed in the last round, see Sigg and Svensson 2004)

• Initial thermo profiles identical to first GCSS ASTEX "A209" modeling intercomparison case

EUCLIPSE ASTEX case objectives

Science questions:

- 1. Weaker subsidence, more rapid transition?
- 2. How does entrainment affect the timing of cloud break up?

Why four new intercomparison cases?

Inversion jumps, cloud fraction, and transition time scale

0.0 ASTEX -S11 P2K -S11 CTL -Comp Slow Comp. Fast -2.0 -Comp. Ref DALES -Sandu delta qt (g/kg) Lock -Blossey -4.0 -Ackerman CGILS S11 -6.0 Composite cases -8.0 38 12 15 18 0 3 6 9 delta thl (K)

