

Model evaluation using AMMA data

Dominique Bouniol, Françoise Guichard, Fleur Couvreux

Thanks for their contributions to:

P.-H. Kamsu-Tamo, M. Leplay, E. O'Connor, I. Beau, F. Bouyssel, H. Douville, F. Favot, F. Hourdin, J-M Piriou, B. Pohl, S. Tyteca

EUCLIPSE kick off meeting, Utrecht, 27-28 September 2010

Why West Africa ?

Continental/tropical region:

- Not only MCS !
- Highly coupled system: Cloud/Radiations/Surface processes
- Importance of clouds in the water cycle
- Clouds feedbacks are expected on large scale dynamics, atmospheric chemistry, surface processes...
- Very few constraints exists in models for this region

Unprecedent data base (ground-based and spaceborne measurements)

- Documentation up to the continental scale
- Several time scales
- Cloud cover documentation within West-Africa and its temporal evolution
- Evaluation of cloud representation within models
- Evaluation of cloud radiative impact

Data sets

ARM Mobile Facility

Continuous ground-based measurements of cloud properties (radar+lidar verticaly sampling) + additional measurements (RS, flux. April-september 2006

A-Train (CloudSat/CALIPSO)

Spaceborne measurements lof cloud properties

(radar+lidar verticaly sampling) Sampling twice a day ~ 1h30, 13h30 LT Since April 2006

West Africa transect: 10W/10E -5N/45N Resolution: 0.5° x 500 m

2 strategies:

Documentation/Evaluation

- time series at Niamey and ground fluxes stations
- in transect (no zonal variability)

AMMA MIP Transect

(model intercomparison project)

Hourdin et al. (BAMS 2010)

"A meridional cross-section analysis provides the framework to assess regional and global model skill at simulating seasonal and intraseasonal variations of the West African monsoon, and thus mechanisms for the region's rainfall."

- Motivated by well defined meridional structures over West Africa (surface & atmosphere)
- In the spirit of EUROCS Pacific cross section (Siebesma et al 2004)
- A light framework for evaluating GCMs, RCMs SST prescribed, a few years only
- Ongoing work (phase 2: AMMA data, param...)

albedo, source EUMETSAT/GEM

Institute	CNRM	ENEA	UCM	IPSL	IPSLTI	IPSLWA	LPAOSF	LGGE
Model	ARPEGE	ECHAM4	UCLA7.3	LMDZ4	LMDZ4	LMDZ4	LMDZ4	MAR
Specificity	Climate version	2 vertical resolutions	Ensemble (10)	Ensemble (5)	convection Tiedtke Emanuel	Zoom West Africa	Zoom West Africa	LAM

ZONAL WIND (latitude, height) in GCMs and reanalyses [JJAS mean]

ERA40

PRECIPITATION (time, latitude) in GCMs, reanalyses & satellite products

All GCMs simulate a summer northward migration of rainfall

however...

- rainfall amount quite varied
- intraseasonal variations more or less pronounced
- ITCZ location & width differ
- NWP not really better

most existing studies focused on large-scale dynamics and rainfall only not much studies / considerations of physical processes & feedbacks

TOA RADIATIVE FLUX : Rnet = $SW \downarrow - SW \uparrow - OLR$

well defined structure of TOA net radiative flux: seasonal cycle, surface (desert) but not only...

a tongue of high Rnet emerges, migrates northward in the Sahel (10-15°N) during the monsoon shaped by the structure of cloud radiative impact (Rnet TOA ~ energy input atmos. column)

..... is this feature reproduced by models ? (preliminary answer: not so well)

Seasonal evolution at the West-Africa scale (2008) Compositing the CloudSat and CALIPSO data => CF, cloud occurrence

Within models...

NWP => day to day comparison ECMWF: 91 vertical levels Agusti-Panareda et al. (2009) analyses (25 km), reanalyses (40 km), forecast (12h->36h) ARPEGE : Arpege 2006 forecast (6h->30h) T538 60 vertical levels stretched grid Arpege 2008 forecast (0h->24h) T127 31 vertical levels **Climate** => statistical comparison AMMA-MIP for 2000 and 2003 (average 10W-10E) Hourdin et al. (2009) Arpege climat : 31 levels, 300 km LMDZ : 19 levels, 2.5° LPOASF: IPSL zoomed on West Africa, 150 km ECHAM4 : 19/42 levels 370 km LGGE : 40 levels, 40 km Arpege climat 2006 : control and nudged runs Polh et al. 2009 31 levels, 300 km 31 levels, 300 km Arpege climat : pre-run AR5/CMIP5 (AMIP, Transpose AMIP-Surfex, ...)

Evaluation of the cloud cover at the West Africa scale

Evaluation of the cloud cover at the West Africa scale

Relationships between cloud cover and radiative fluxes in Climat models

Strong underestimation of SW (↓ and ↑): optical properties of mid and low level clouds ?

Underestimation of cloud cover => overestimation of SW↓ overestimation of TOA OLR small impact on LW↓

Diurnal cycle from CloudSat/CALIPSO data : May

Radar: same sensitivity day or night time Lidar: more sensitivity during night time => may bias the observation of the diurnal cycle

Diurnal cycle from CloudSat/CALIPSO data : August

Seasonnal cycle of cloud cover at Niamey

Cloud frequency of occurrence

4 « categories » of clouds with cirrus and mid-level clouds occurring all along the season

Diurnal cycle

Each « category » presents a diurnal cycle that evolves during the Monsoon season

Diurnal composite of cloud occurrence at Niamey

Evaluation of cloud radiative impact at Niamey

sky/occurrence of a given cloud category diurnal composite of Fcloud-Fclear sky : impact min/moy/max by month

ARM data

- Radiative impact of $\ensuremath{\text{mid-level}}$ in SW1 and LW1
- Strong radiative impact of deep cv (SW \downarrow)
- Small impact of cirrus even in LW $\!\!\downarrow$

ERA ECMWF

- Strong underestimation of mid-level radiative impact

- Agreement on deep cv radiative impact

Conclusions/Perspectives

Unprecedent data base is now available for studying the cloud processes and evaluate the representation of clouds in models in a region where very low constraints exists

• Temporal variability at ground-based sites (ARM data) or spatial variability (A-Train)

Four cloud categories are identified + Sc over the Guinea gulf

- High-level and mid-level clouds are ubiquous before and during Monsoon
- All present a diurnal cycle that evolves during the Monsoon season
- Strong impact of mid-level clouds in SW and LW, small impact of high-level clouds

Comparison with Climate models

- Underestimation of mid-level and low-level clouds + high-level (in LMDZ)/ overestimation (in ARPEGE_Climat)
- Small impact on surface radiative fluxes for ARPEGE_Climat / overestimation of SW at the surface and an overestimation of OLR at TOA for LMDZ

Future work

- Generalise the « category » sorting in the satellite data and in the model outputs
- Quantification at the scale of WA of each cloud category impact / comparison with models

 At ground based sites, study of the relationships between cloud cover and surface/TOA fluxes