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A Lagrangian View of Cloud Evolution and Feedbacks

e GASS stratocumulus to trade cumulus transition: a CLDLOW 1S5CP Ja
composite case from the Northeast Pacific (Sandu, Ly
Stevens & Pincus, 2010; Sandu & Stevens, 2011);

summertime conditions (JJA2006-7).

e Simulation follows composite Lagrangian trajectofy 2on| \CS
over warmer SSTs with fixed subsidence.
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(top) the beginning and {bottom) the end of the simulation.




Lagrangian cloud response to climate perturbations

® Modified GASS Lagrangian transition case.
® Four climate perturbations (no changes to wind speed, FT RH):
= P4 (warming): SST+4K, moist adiabatic warming aloft,

= dEIS (stabilityt): SST+2K locally, SST+4K in deep tropics. Causes
EIS increase of 3K at start vs. CTL, P4. Stronger than expected
changes based on CMIP3 models (AEIS<~1K),

= 4xCO2,
= P4 4x (combined warming and 4xCQ2).

® Adapt (weak) subsidence aloft in each case so that free tropospheric
energy budget is in approximate balance (P4 subsidence ~ 0.9 CTL
subsidence).
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Results: Cloud Fraction

CTL cloud fraction

time, day |

® Cloud thins in P4 simulation relative to CTL. Yet more thinning in P4 4x.
® P4, 4xCO2 runs more decoupled on first night than CTL, dEIS.



Time series Q
o
L
()
—
CTL =
P4 T
— — = 4xCO2 @
----- dEIS
— — — P44x

® Warming (P4) leads to
thinner more broken cloud.

® Large ASWCRE (CTL— P4)
due in part to partial cloud
cover (~80-85%), stronger

decoupling.

® With 4xCO,, cloud thinner on
first full day but mostly 1=
recovers on second. =

® Increase stability offsets S
warming in dEIS simulation. c%

® More thinning in combined
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* Entrainment (and cloudiness) increases with MBL radiative flux divergence AR
(inversion strength Ab also important, but varies less between runs)

* However, P4 and 4C0O2 have similar AR and Ab, but P4 is less cloudy

* =» radiative and thermodynamic mechanisms, as in CGILS (Breth. et al. 2013).



Entrainment efficiency
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* Higher k=1 + As//LAq, and less cloud in warmer cases
* However, entrainment efficiency A_ = w,Ab/e does not increase
* Warmer: less cloud = same turb =» same entrainment.



Rieck et al. (2012) Cu-entrainment-desiccation mechanism

shallower, moister deeper, drier and
and cloudier less cloudy
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Fi1Gc. 11. Schematic diagram showing the main response of the cloud-topped boundary layer
to a change in temperature, assuming large-scale processes act to keep the humidity constant.

Rieck: In a ‘constant RH’ atmosphere, stronger LHF =» More entrainment
Entrainment drying = higher Cu base
Lower Cu-layer RH =¥ less cloud cover even though in-cloud LWC higher
(positive cloud feedback)

Lagr P4: Stronger LHF
vs. 4CO2 Entrainment and Cu base hardly change due to cloud-radiative control
Still get less cloud, even though Rieck mechanism doesn’t apply here.



Warming-induced cloud thinning mechanism

Instantaneously warm T, of a turbulent CTBL and the overlying free troposphere
by 8T, keeping RH = q,/q.(z, T,) and radiative flux divergence AR constant.

The initial CTBL response is to increase horizontal q, and T perturbations,
increasing turbulent buoyancy production & entrainment rate w,, (like Rieck et al)
Entrainment drying thins Sc cloud until w, readjusts to the pre-existing AR, AB,.

In our LES runs, this cloud thinning adjustment takes only 2-4 hours.
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Simple model of this process

* g, =B max(RH-1, 0), 6B/6T =2-3% K1
Horizontal RH variability Gaussian with std dev op.

Vertical RH lapse rate I'; (negligible dependence on 6T)

Radiative cooling €= entrainment warming €= buoy flux
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= Adjust cloud thickness in warmer climate to keep F = constant
in the presence of larger horizontal moisture variability.



Results for Day 1 average parameters
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* This simple model will always predict a warming-induced cloud fraction and
LWP reduction, regardless of the chosen F and oy
* Decreased AR lowers F in the warmer climate, accentuating cloud reduction.
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Shallow Cu example (vertically uniform RH in cloud layer)

Fixed F, o;. Let R =mean RH in a layer of thickness z.,.

Define ‘potential liquid water’ q;, = B(RH-1). Its distribution
broadens in warmer climate with larger .
Same liquid water variance (and flux) and turbulence production

can be maintained with a lower R and less cloud fraction in
warmer climate, due to the broader humidity variance.
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Conclusions

As in CGILS, Lagrangian framework corroborates cloud
thinning in a warmer climate, moderated by EIS increases.

Cloud thinning is due to

1. reduced radiative destabilization

2. thermodynamically-driven increase in cloud heterogeneity
A simple model isolates thermodynamic feedback on cloud.

In a warmer climate, more moisture variance generates clouds
with more heterogeneous liquid water. These generate the
same levels of turbulence and entrainment with less cloud
fraction and liquid water path.



