A Decomposition of Feedback Contributions to Polar Warming Amplification: The Role of Clouds

Ming Cai and Patrick C. Taylor²

¹ FSU, ² NASA Langley

Temperature Response to 2xCO₂ Forcing in NCAR CCSM4 Climate Simulations (at the time of doubling of CO₂ from its pre-industry level 284.7 PPM)

← Zonal mean air temperature change

<DT>=1.64 K

Questions

- How much warming is just due to the doubling of CO₂ alone?
- What are the additional temperature changes due to various radiative (e.g., clouds, water vapor, ice-albedo) and non-radiative (turbulence, convective, large-scale dynamic) feedback processes?
- What are their contributions to the final warming pattern?
- What are the main processes contributing the **polar warming amplification?** 3

General definition of feedback

- Forcing: an energy input to the system
- Response: an output of the system
- A feedback: an "induced input from the output"

Partial Radiative Perturbation Method

- Forcing: a radiative flux perturbation at the TOA
- **Response: surface temperature (or system temperature)**
- Feedback: additional radiative flux perturbations at the TOA in response to surface temperature

Coupled Atmosphere-Surface Climate Feedback-Response Analysis Method (CFRAM) (Lu & Cai 2009; Cai & Lu 2009)

- Forcing: an external energy perturbation profile in the atmosphere-surface column at each grid point
- Response: a vertically varying atmosphere-surface temperature profile at each grid point.
- Feedback: any energy flux perturbations that are not caused by the the longwave radiation change due to temperature changes.
- Changes in feedback agents are regarded as parallel to temperature changes, rather than as the response to changes in surface temperature as in PRP method.
- CFRAM calculate the effect of changes in each feedback agent on the temperature.

Formulation of CFRAM

Unperturbed climate state

 $(\overline{S} - \overline{R}) + \overline{Q} = \frac{\partial E}{\partial t}$ *net* rad. cooling/heating *non-radiative* dyn. heating/cooling

Perturbation in response an external forcing $\underline{\Delta(\mathbf{S} - \mathbf{R})}$ *change* in *net* rad. cooling/heating (F^{2CO2} included) + $\underline{\Delta \mathbf{Q}}$ *change* in *non-radiative* dyn. heating/cooling $= \underline{\Delta \vec{E}}_{Heat \ Storage}$

Formulation of CFRAM

The radiation flux change only due to a change in the atmosphere-surface column temperature

 $\left(\frac{\partial \mathbf{R}}{\partial \overline{\mathbf{T}}}\right) \text{Planck feedback} \\ \text{matrix}$

Radiative energy

= input due to the external forcing

> **Radiative and non-radiative** energy flux perturbations that are not due to the radiation change associated with temperature changes and external forcing

+

Formulation of CFRAM

$$\Delta \overline{\mathbf{Q}} = \Delta \overline{\mathbf{Q}}^{LH_{flux}} + \Delta \overline{\mathbf{Q}}^{SH_{flux}} + (\Delta \overline{\mathbf{Q}}^{convection} + \Delta \overline{\mathbf{Q}}^{ATM_{lg_{dyn}}}) + \Delta \overline{\mathbf{Q}}^{OCN_{dyn}}$$

How much does atmosphere-surface temperature have to change in order to balance out the energy perturbation due to external forcing, due to each feedback via thermal radiation?

Validation of Linearization

 $\Delta^{(tot)}(\mathbf{\vec{S}} - \mathbf{\vec{R}}) \simeq \mathbf{\vec{F}}^{2CO_2} + \Delta^{(\alpha)}\mathbf{\vec{S}} + \Delta^{(c)}(\mathbf{\vec{S}} - \mathbf{\vec{R}}) + \Delta^{(w)}(\mathbf{\vec{S}} - \mathbf{\vec{R}}) - \Delta^{(w)}(\mathbf{\vec{S}} - \mathbf{\vec{S}}) - \Delta^{(w)}(\mathbf{\vec{S}} - \mathbf{\vec{S}}) - \Delta^{(w)}(\mathbf{\vec{S}} - \mathbf{\vec{R}}) - \Delta^{(w)}(\mathbf{\vec{S}} - \mathbf{\vec{S}}) - \Delta^{(w)$

Shadings

contours

 $\frac{\partial \overline{\mathbf{R}}}{\partial \overline{\mathbf{T}}}$

 $\overrightarrow{\mathbf{T}}^{tot}$

Climatological Clouds

Changes in Clouds

Changes in clouds versus changes in circulations

Changes in clouds are coupled with changes in energy flux convergence associated with atmospheric circulation.

Cloud Feedbacks

SW forcing: $\Delta^{(c)}(\mathbf{\bar{S}})$

LW forcing: $\Delta^{(c)}(-\overline{R})$

At TOA, one only "see" a fractional part of cloud LW forcing applied to the surface over the polar area (over Arctic: 1.5/7)

Temperature changes due to changes in clouds

Attributions

Summary

- The linearization of radiation transfer model is a good approximation for global warming climate feedback analysis and sum of partial temp. changes is very close to the total temp. change (validation of CFRAM).
- Cloud SW forcing at the TOA is almost same as at the Surface. However, only a fraction of cloud LW forcing at the surface can be seen at the TOA, particularly over the polar region.
- 2CO₂ forcing, cloud longwave, surface albedo feedbacks, and atmospheric dynamical feedbacks all contribute to stronger surface warming at high latitudes.
- Cloud LW feedback is the dominant feedback for winter polar warming amplification while ice-albedo feedback indirectly contributes the winter polar warming amplification via ocean heat storage (Sejas et al. 2013)