

Role of Radiative Convective Instability in Madden Julian Oscillation

Deepa Raveendran Pillai, Romain Roehrig & Dominique Bouniol

CNRM-GAME, Météo-France & CNRS, Toulouse, France

The Madden-Julian Oscillation (MJO)

Idealized representation of the MJO 3D structure.

- Discovered by R. Madden and P. Julian at NCAR in 1971
- Convective envelope ~10,000 km wide, moving eastward at around 5 m/s
- Most active over regions of high SSTs > 27°C
- > Large impact on the extratropical circulation
- Poorly represented in GCMs, if at all (Lin et al 2007, Hung et al. 2013).
- Scale interactions, from convective cells, MCSs to equatorial waves

Source: Climate Prediction Center (CPC/NCEP)

The Madden-Julian Oscillation (MJO)

Winter (NDJFM) MJO life cycle: composites of precipitation anomalies

Several methods for detection:

- The 8 phases of Wheeler and Hendon (2004), using Principal Component Analysis.
- Regression over 20-100-day filtered precipitation averaged over specific domains (e.g., Indian Ocean)

Correlation between IO filtered precipitation and precip/U850 [10S-10N]

Waliser et al. (2009)

Cloud and Radiation within the MJO

Lau and Wu (2010)

Radiative budget during the MJO active phase

Cloud and Radiation within the MJO

Tb vs Echo-Top Height Histogram

Lau and Wu (2010)

Rationale of the present study:

- Provide an update of the MJO radiative budget, with the most recent datasets;
- Evaluate the cloud and radiative component of the MJO in the CNRM-CM5 (and other) models;
- Better understand the radiative role of clouds in the MJO.

OUTLINE

- Introduction
- Model and Datasets used
- Radiative budget of the MJO in Observations
- Evaluation of the Radiative Component of MJO in CNRM-CM5
- Radiative Convective Instability
- Conclusions

Observational and model datasets

Observations:

- CERES data: TOA and parameterized surface fluxes [2000-2011, 1°x1°].
- Combined Cloudsat/CALIPSO data [2006-2009,2°x2°].

> <u>Model:</u>

- CNRM-CM5: Historical, AMIP [1979-2008].
- The column integrated diabatic heating

 $\langle Q_1 \rangle = \langle Q_{\text{conv}} \rangle + \langle Q_R \rangle$ where $\langle \rangle = \int_{p_t}^{p_s} dp$ = $LP + S + \langle Q_R \rangle$,

- Region of Study:
 - Reference: Indian Ocean
- Season: Winter (NDJFM)

Observations: Clouds in the MJO life cycle

CLOUDSAT+CALIPSO TOTAL CLOUD AMOUNT MODIS TOTAL CLOUD AMOUNT (used in CERES)

2006-2009: Nov to Apr

2000-2011: Nov to Apr

Observations: TOA radiative budget (CERES)

Total cloud amount (MODIS)

Observations: TOA radiative budget (CERES)

Observations: Surface radiative budget (CERES)

Surface LW_{dn} and LW_{up}

LW _{up} consistent with SST anomalies
observed during the MJO (Zhang, 1996)

Surface $SW_{\rm dn}$ and $SW_{\rm up}$

Surface budget dominated by surface SW_{dn}

MJO life cycle in CNRM-CM5 (Historical)

Total cloud amount

CALIPSO+CloudSat

2006-2009: Nov to Apr

CNRM-CM5

1979-2005: Nov to Apr

MJO TOA radiative budget in CNRM-CM5 (Historical)

CERES Observations

MJO Surface radiative budget in CNRM-CM5 (Historical)

Surface radiative components

MJO Atmospheric diabatic budget in CNRM-CM5 (Historical)

Radiative Heating: $\langle Q_r \rangle = Net_{TOA} - Net_{Surface}$

Radiative-Convective Instability

Enhancement factor

Ratio of column integrated radiative heating to column integrated convective heating [Raymond, 2001]

$$RCI = \frac{-\langle Q_r \rangle}{\langle Q_{conv} \rangle} \leq \frac{-OLR}{L_v \times precip} = RCI_{max}$$

Radiative-Convective Instability in the MJO: Observations

For each longitude, the values correspond to the time (lag) when MJO precipitation anomaly is maximum (Lin and Mapes 2004).

Radiative-Convective Instability in the MJO: CNRM-CM5 (Hist)

For each longitude, the values correspond to the time (lag) when MJO precipitation anomaly is maximum (Lin and Mapes 2004).

Radiative-Convective Instability in the MJO: CNRM-CM5 (AMIP)

For each longitude, the values correspond to the time (lag) when MJO precipitation anomaly is maximum (Lin and Mapes 2004).

Conclusions and Perspectives

Conclusions:

- The radiation budget analysis reveals that the radiative heating lags the convective heating by 2-3 days.
- For the TOA radiation budget, surface upwelling shortwave radiation anomalies are dominating and for the surface radiation budget, surface downwelling shortwave radiation is dominant.
- The CNRM-CM5 model, in its coupled version, is able to simulate the MJO very well compared to the observations.
- ➤ The enhancement factor which is a measure of radiative-convective instability is high in the Western India Ocean in both the CNRM-CM5 simulations and in observations.
- > It seems highly overestimated in the AMIP simulation.
 - \longrightarrow How does it impact the MJO simulation?

Future work:

> Continue to analyze in detail the simulated cloud and radiative budget in CNRM-CM5.

➤Continue to investigate the role of clouds within the MJO in particular using the COOKIE framework.

Perspectives

Perspectives

0.004 0.0128 0.0216 0.0304 0.0392 0.048

30d

80d

80d

0.020

0.040

30d

THANK YOU