Cumulus congestus: Along for the ride?

Cathy Hohenegger Bjorn Stevens

Max-Planck-Institut für Meteorologie Hamburg

Preconditioning deep convection with cumulus congestus, 2013, *J. Atmos. Sci.*, **70**, 448-464

Cumulus congestus

- 3rd dominant cloud population
- Precipitate
- Moisten
- Generate circulation

Preconditioning idea

 Congestus moistening promotes deep convection

 Convergence (from congestus) promotes deep convection

(Linda Schlemmer)

This talk

- 1. Is congestus moistening fast enough to promote deep convection ?
 - Observed transition time T_{obs}
 Actual transition time, from congestus to deep
 - Congestus moistening transition time T_{cmoist}
 Transition time if the only acting process would be moistening by congestus
 - Convergence-induced transition time T_w

Transition time if the transition was forced through convergence

1. Is the convergence induced by congestus clouds strong enough to promote deep convection?

Observed transition time T_{obs}

Congestus moistening transition time T_{cmoist}

Max-Planck-Institut für Meteorologie

Convergence-induced transition time T_w

- T_{cmoist} = 10 h
- T_w = 1-4 h

This talk

- 1. Is congestus moistening fast enough to promote deep convection ?
 - For the spatial and temporal scales of systems considered, no
 - Congestus are along for the ride...
- 1. Is the convergence induced by congestus clouds strong enough to explain observed transition times?
 - w ~ 1 cm s⁻¹, T ~ 4 h
 - w ~ 2 cm s⁻¹, T ~ 2 h

Circulation induced by congestus clouds

- Divergence deduced from congestus (C_L 2) during KWAJEX would give:
 - $w \sim 0.2 \text{ cm s}^{-1} << 1 \text{ cm s}^{-1}$

Convergence induced by congestus

Convergence induced by congestus

Enhancing convergence?

- $T_{cmoist} = 10 h$
- = 1-4 h T_{w}
- = 4 h Т

Khairoutdinov and Randall (2006), Rio et al. (2009), Boing et al. (2012)

Conclusions

Are cumulus congestus just along for the ride ?

- Moistening of the troposphere Along for the ride
- Inducing circulation through heating Along for the ride
- Cold pools
 Not for the ride

For the range of spatial and temporal scales considered here.

