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We hypothesize that

differences between parameterizations, rather than between
large-scale states, are responsible for this diversity

better (or even more uniform) parameterizations would lead
to narrow distributions of predictions

Corollaries: differences between parameterization should be
evident in present-day simulations

evident at short time scales



Diurnally-averaged CERES albedo
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Diurnally-averaged CERES low cloud albedo
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Rank using Wasserstien distance
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Rank using Kullback-Liebler distance
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We predict low cloud albedo from time-averaged environmental
state with (nonlinear, multivariate) Baysesian neural networks

The skill of the fit generally increases with
the number of variables used in the prediction
the averaging time scale

We make separate statistical models for CERES/ERA and each
GCM at each time scale

This lets us assess the degree to which error can be reduced by
using (more) realistic physics or environmental states
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Relative error using GCM state
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The news so far

(Measuring distances between environmental states is difficult)

Distributions of tropical low cloud albedo are more sensitive to
physics than to dynamics...

... but simply replacing parameterizations with “better” physics
won’t necessarily make predictions more uniform

in part because models contain compensating errors



