The stratocumulus response to a single perturbation in cloud controlling factors

Stephan de Roode, Pier Siebesma, Sara Dal Gesso,

Harm Jonker, Jerôme Schalkwijk and Jasper Sival

The boundary layer budget equation for a conserved variable

$$\begin{split} z_{\rm i} \frac{\partial \psi_{\rm ml}}{\partial t} &= C_{\rm d} U(\psi_0 - \psi_{\rm ml}) + w_{\rm e}(\psi|_{z_{\rm i}^+} - \psi_{\rm ml}) - \Delta S_\psi \\ & \text{surface flux} & \text{entrainment flux} & \text{source term} \end{split}$$

The cloud controlling factors

Variable φ	Units	Reference value
θ_0	(K)	288.0
D	(s^{-1})	$5 \cdot 10^{-6}$
U	(ms^{-1})	10.0
ΔF	(Kms^{-1})	0.035
$ heta_{ m ft}$	(K)	[285,301]
q_{ft}	$(g kg^{-1})$	[0,9]
Γ_{θ}	$(K \text{ km}^{-1})$	6.0

Equilibrium State Solutions

$$q_{t,ml} = q_{sat,0} + \frac{w_e(q_{ft} - q_{sat,0})}{w_e + C_d U}$$
$$\theta_{l,ml} = \theta_0 + \frac{w_e(\theta_l|_{z_i^+} - \theta_0) - \Delta F}{w_e + C_d U}$$

 $w_{\rm e} = D z_{\rm i}$

Partial derivatives with respect to SST (for fixed entrainment rate):

$$0 < \frac{\partial \theta_{\rm l,ml}}{\partial \theta_0} = \frac{\partial q_{\rm t,ml}}{\partial q_{\rm sat,0}} = \frac{C_{\rm d}U}{w_{\rm e} + C_{\rm d}U} < 1$$

Warmer SST -> warmer and moister boundary layer

What about LWP response?

LWP response to SST change (fixed entrainment rate)

Partial and total derivatives

(entrainment parameterization from Nicholls and Turton 1986)

Liquid water path (LWP) response to a perturbation in a cloud controlling factor ϕ_i

The total response

thinning: $dz_b > dz_i$ thickening: $dz_b < dz_i$ "cloud deepening through entrainment"(Randall,1984)

The entrainment response

(parameterization from Nicholls and Turton 1986)

more entrainment if SST is increased

Partial and total derivatives

increase in sensible heat flux

with entrainment response

decrease in sensible heat flux

Total LWP response (including entrainment response)

Conclusions

Entrainment multiplier

Entrainment response can change sign of the LWP response

Single changes

Opposing LWP responses, e.g. SST and free tropospheric temperature

Outlook/wish

Test entrainment response due to a single change in SCM framework

Direct response (entrainment fixed)

Total response (including entrainment response)

Total entrainment response (Nicholls & Turton)

Equilibrium State Solutions

$$\psi \in \{q_{t}, \theta_{l}\}$$

$$z_{i} \frac{\partial \psi_{ml}}{\partial t} = C_{d} U(\psi_{0} - \psi_{ml}) + w_{e}(\psi|_{z_{i}^{+}} - \psi_{ml}) - \Delta S_{\psi} = \mathbf{0}$$

$$\frac{\partial z_{\mathbf{i}}}{\partial t} = w_{\mathbf{e}} + \overline{w}|_{z_{\mathbf{i}}} = \mathbf{0}$$

Entrainment rate w_e from Nicholls-Turton (1986)

$$\Delta S_{qt} = 0$$

$$\Delta S_{\theta I} = \Delta F_{rad} / \rho c_{p}, \Delta F_{rad} = 40 \text{ Wm}^{-2}$$

- no drizzle
- net radiative cooling

