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Global warming is known for long but its magnitude is still uncertain

Since the 19th Century
Theory and climate models predict global warming as a response to increased CO2
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What are the causes of this irreducible range ?

» Cloud feedbacks have long been identified as the leading source of spread of climate
sensitivity estimates

» Recent studies suggest that direct cloud adjustments to increased CO2 could also
influence climate sensitivity estimates

» Uncertainty associated with cloud feedbacks may have been misdirected



Aim :

Revisit the concept of forcing and feedback and the interpretation of inter-
model spread in climate sensitivity estimates

» Isolate the role of CO2 and surface warming in the climate response to
increased CO2

Questions :

1 ) How does the method affect the quantification of individual feedback and
forcing terms?

2 ) Which components influence the most the spread of climate sensitivity
estimates?

Are cloud feedbacks still the leading source of spread?



Response of the climate system to a radiative perturbation (4 x CO2)
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Response of the climate system to a radiative perturbation (4 x CO2)
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Response of the climate system to a radiative perturbation (4 x CO2)
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Using the radiative kernels to decompose the TOA radiation change

» Xx=CO02, temperature, water vapor, albedo:
Use NCAR model's kernels

51—1\) A — 6 R\ Axr
o @Al o O Al assT
- Kernel for x

» For clouds:
Changes in CRE corrected for changes in non-cloud variables
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» A residual term:
Difference between model- and kernel-derived clear-sky fluxes
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It measures the accuracy of the kernel approximation for model-derived clear-sky flux changes




What is the relative contribution of increased CO2 and land surface warming to
tropospheric adjustments ?

» Compare adjustments estimated from:
- fixed-SST experiments (CO2 & land surface temperature vary)
- aquaplanet experiments (CO2 only varies, no change in land/sea contrast)

Aquaplanet experiments: no response to increased CO2
Temperature Water vapor albedo
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Non-cloud adjustments arise from land surface warming only
» Non-cloud feedbacks are unchanged when tropospheric adjustments are taken into account
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Aguaplanet experiments: cloud responses to increased CO2
Cloud SW Cloud LW Cloud NET

Cloud adjustments arise from change in CO2 and land surface warming
Net cloud adjustments are positive for all models, and dominated by SW component

Multi-model mean cloud feedback is reduced by 33% when tropospheric adjustments are
taken into account



Decomposition of CMIP5 climate sensitivity estimates

Equilibrium climate sensitivity ranges from 1.9° to 4.4°C
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Decomposition of the inter-model spread

> Inter-model standard deviation of the temperature change associated with each
component, normalized by the inter-model standard deviation of the total temperature change
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»  Cloud feedback represents
70% of the total spread; the
spread is the largest in tropics

» WV+LR feedback is the
second most important source of
spread (30%); largest spread in
tropics

» The residual is the largest
source of spread among all
forcing terms (< 10%, less than
for any feedback)

The inter-model spread of climate sensitivity arises primarily from the spread of
feedbacks rather than adjustments, and particularly from the tropical cloud feedback.




Summary

e Considering tropospheric adjustments to CO2 and land surface warming:

- cloud adjustments are positive, and multi-model cloud feedback is reduced by 33%

- hon-cloud adjustments are better understood as responses to land surface warming,
with no change in nhon-cloud feedbacks

- cloud feedbacks remain the main contribution to the spread of climate sensitivity
(70%), especially the tropical cloud feedback

— the tropical WV+LR feedback is the second most important source of spread

e Substantial role of the residual term in the calculation of adjustments and
feedbacks

- the kernel method underestimates the multi-model mean and inter-model spread
temperature change associated with the cloud feedback



Current work

-~ Analyse differences in tropical low-cloud feedback between IPSL-CM5A and IPSL-
CM5B (which cover a large part of the inter-model spread) using SCM and CGILS
protocole (subsidence region on the Californian cost)
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Thank you !



Relationships between the forcings, the feedback parameters and the equilibrium
global mean surface temperature
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» when tropospheric adjustments to CO2 forcing are NOT
taken into account (classical approach)

» when tropospheric adjustments to CO2 forcing are taken
Into account

» adjusted radiative forcing estimated from fixed-SST
experiments, in which the land surface temperature is allowed
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The kernel method underestimates the multi-model mean temperature
change associated with the cloud feedback
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The kernel method underestimates the inter-model spread in temperature
change associated with the cloud feedback and overestimate that of all

other components

All models
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