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Calculating Cloud Feedbacks

& Rapid Adjustments

* Method 1: Gregory analysis

— Multiply Aclouds by their radiative impact (cloud
radiative kernels)

— Plot this product as function of T,

* Slope = cloud feedback
* Y-intercept = rapid cloud adjustment

 Method 2: sstClim4xCO2 runs (Hansen-style
experiments)

— SSTs held fixed while CO, is quadrupled
— Gives another estimate of the rapid adjustment
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What happens to clouds as the planet warms in climate models?

A Total Cloud Frac.: -0.10 % K1
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Implied Feedback
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NEGATIVE

....but the devil
is in the details...



T-Mediated Cloud Changes
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Global Mean Cloud Feedbacks
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As the planet warms, clouds become fewer, higher, and thicker
- The SW cloud feedback is small because fewer oppose thicker

The net cloud amount and altitude feedbacks are robustly positive

As in CMIP3, biggest inter-model spread in net comes from low clouds,
but biggest inter-model spread in LW and SW comes from high clouds
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Cloud Feedback + Adjustment
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Immediately upon increase of CO,, does the cooling effect of clouds strengthen or weaken?

Negative cloud Positive cloud
adjustment adjustment
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What happens to clouds immediately upon quadrupling CO,?

A Total Cloud Frac.: -0.50 %
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Implied Radiative Impact
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Global Mean Rapid Cloud Adjustments
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Immediately upon CO, quadrupling, clouds become fewer, higher, and thinner
- the LW cloud adjustment is small because fewer/thinner oppose higher

Thinner & fewer act together to bring about a big reduction in reflected SW.
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Importance of properly accounting
for rapid adjustments
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* Here we are considering only altitude and optical depth feedbacks



Conclusions

* Upon 4xCO,, clouds rapidly become fewer, higher, and thinner, each
contributing equally to a +1.1 W m™ net cloud radiative adjustment

— Rapid reductions in mid-level clouds and optically thick clouds are
especially important in reducing planetary albedo in every model.

* Asthe planet warms, clouds become fewer, higher, and thicker, and
global mean net cloud feedback is positive in all but one model
— As in CMIP3, low cloud changes are the largest contributor to the mean

and spread in net cloud feedback, but high cloud changes are the largest
contributor to inter-model spread in LW and SW cloud feedbacks.

* Accounting for rapid adjustments reduces the ensemble mean net
cloud feedback by 0.14 W m2 K (to 0.30 W m2 K1)

— Due to combination of smaller positive cloud amount & altitude feedbacks
and a larger negative optical depth feedback.
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