Radiation, Cloud Water Content and Precipitation Evaluation of CMIP3 and CMIP5 20th Century Simulations: Implications for Neglecting Precipitating/Convective Cloud Hydrometeors on Radiation.

Jui-Lin F. Li/JPL, Duane Waliser/JPL, Graeme Stephens/JPL Tristan L'Ecuyer/UW-Madison R. Forbes/ECMWF

Evaluation of Cloud ice in CMIP3 and CMIP5 GCMs and Contemporary Analyses

So far, in the 16 CMIP5 models, four models **partially** consider the interaction of precipitating and/or convective core hydrometeors with radiation in their models.

➔ discriminating observed "cloud only" IWC data is needed for meaningful modeldata comparison for <u>cloud ice only</u> for most CMIP5 models.

(Li and Waliser et al., 2012a, in review)

Observed Ice Water Content Data Used:

- **1. CWC** CloudSat Radar Only (Standard CloudSat product)
- 2. DARDAR CloudSat Radar +CALIPSO Lidar combined products (Delanoe et al., 2010)].
- **3. 2CICE** CloudSat Radar +CALIPSO Lidar combined products (Deng, 2011)

Observed Liquid Water Content Data Used:

- 1. CloudSat LWP (900 ~100 hPa)
- 2. AMSRE
- 3. MODIS

Observed Cloud Ice/Liquid Water Content

Methods to estimate observed cloud ice water content (CIWC) and cloud liquid water content (CLWC) from CloudSat and/or Calipso:

• FLAG method - Methods used to filter out cloud hydrometers using flags with convective & precipitation cases & column information to get ballpark estimates of CIWCL & CLWC for use in IPCC model evaluation ((Li et al., 2008; Waliser et al., 2009)

Filtering out convective clouds and precipitating cases we can get as a *preliminary* estimate of ice in clouds (albeit this has shortcomings)

(Waliser et al, 2009; Li et al., 2008)

(Chen et al., 2011)

Observed Cloud Water Content (WIP) for Model-Data Evaluation

Observed Ice Water Content (IWC) for Model-Data Evaluation

IPCC CMIP5 Model Uncertainties: "Cloud Ice water Path- IWP"

CMIP3

CMIP5

80 100

(a) CMIP5 Model Mean Bias No GISS (c) CMIP5 Model Mean Bias No GISS/Inmcm4

Bias of CMIP5 Ensemble Mean CLWP vs Obs. Cloud Only LWP

Bias of CMIP Ensemble Mean CIWP vs Obs. Total IWP

Bias of CMIP Ensemble Mean CLWP vs Obs. Total AMSRE

Significant underestimate CIWC & CLWC are identified in CMIP3 and CMIP5 in particular over convection active regions against observed **TOTAL** Cloud Ice & Liquid estimates.

CMIP downward shortwave at the surface (RSDS) Bias

(Li, Waliser and Stephens et al., 2012c, in preparation)

CMIP Reflected SW at TOA Bias

(W m⁻²)

CMIP 3 & CMIP5 OLR Bias

Note that the cloud top height are overestimate in CMIP5

NET RADIATIVE EFFECTS: NO SNOW-RADIATION -

CONTROL(WITH)

CloudSat offline (Waliser et al., 2010)

6ÓE

120E

120W

180

6ÓE

120E

180

12**0**W

15

9

6

3

-2 -5

> 15 9 6

3

-2

"DIRECT" IMPACT ON RADIATIVE HEATING PROFILES

Summary and Current/Future Works Researches for Cloud-Convection-Precipitation-Dynamics

1. Characterizations of GCM Cloud Ice/Liquid Model Biases 2007

2009

2010

2011

2012

- 2. Led to the need & capabilities to discriminate between large-particle/falling precipitation vs small-particle/suspended cloud ice (or liquid) in the observations to have viable & relevant estimates for models.
- 3. Identify potential for Earth Radiation Budget & circulation biases due to ignoring largeparticle/precipitation in GCM radiation calculations.
- 4. Characterizing and reducing GCM radiation biases in weather/climate models associated with ignoring precipitation impacts on radiation.
- radiation.
 5. Cloud-Precipitation-Latent-Radiation-Dynamics interactions.
- 6.
- 7.CMIP6

Thanks