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Objectives of CMIP5 analysis

=⇒ What is the relative role of clouds ajustment to CO2 and
SST change ?

=⇒ Which type of clouds contributes the most to the spread
of tropical cloud response ?

=⇒ Are there some robust mechanisms of low-cloud
feedback ?

=⇒ Is it possible to link the behaviours of clouds under global
warming and under present-day natural variability ?

• Spectrum of con�gurations and sensitivity experiments

• Overall behaviour and physical mechanisms

• Comparison with observations and re-analysis

2/26



Objectives of CMIP5 analysis

=⇒ What is the relative role of clouds ajustment to CO2 and
SST change ?

=⇒ Which type of clouds contributes the most to the spread
of tropical cloud response ?

=⇒ Are there some robust mechanisms of low-cloud
feedback ?

=⇒ Is it possible to link the behaviours of clouds under global
warming and under present-day natural variability ?

• Spectrum of con�gurations and sensitivity experiments

• Overall behaviour and physical mechanisms

• Comparison with observations and re-analysis

2/26



Spread of cloud responses in CMIP5 models
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Update of
Bony and Dufresne, 05

I Large range of tropical cloud radiative response

I As in BD05, low-sensitivity and high-sensitivity groups of models de�ned
from CRF change.

I Spread of the SW CRF response in subsidence regimes, of LW CRF response
in convective regimes.

I However, the overall spread in NET response dominated by subsidence
regimes (σ=0.74 W/m2 vs σ=0.33 W/m2/K in conv.)

I

I What part of the spread is relatively due to CO2 and T change ?
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CO2 vs SST response (ocean)
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I Spread of CRF change due to both fast (CO2) and slow (temperature)
responses

I However the spread of Temperature dominates
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I Spread of CRF change due to both fast (CO2) and slow (temperature)
responses

I However the spread of Temperature dominates
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(1) CO2 response (Fast)

I Separation between Convective (left) and Subsidence (right)
regimes

I Spread of fast response in subsidence regimes
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(2) Temperature response (Slow)

I Spread of slow response also in subsidence regimes
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(2) Temperature response (Slow)

I Spread of slow response also in subsidence regimes
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Spread of cloud responses in CMIP5 models
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Update of
Bony and Dufresne, 05

I As in BD05, low-sensitivity and high-sensitivity groups of models de�ned
from CRF change.

I Spread of the SW CRF response in subsidence regimes, of LW CRF response
in convective regimes.

I However, the overall spread in NET response dominated by subsidence
regimes (σ=0.74 W/m2 vs σ=0.33 W/m2/K in convective regimes)

I Zoom on some atmospheric models to study temperature response over
subsidence regimes
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Focus on 6 models

Change in Tropical SW CRF

(AMIP4K-AMIP)

AMIP models ∆ SW CRF (W/m2)

WS/Thermo (%)

IPSL-CM5A-LR 4.5

97

MPI-ESM-LR 2.6

95

HadGEM2-A 1.2

88

MIROC5 0.4

97

CNRM-CM5 -0.5

82

CanAM4 -1.7

50

=⇒ Contribution of thermodynamical SW CRF change over Weak
Subsidence (WS 0-30 hPa/day) compared to Thermo change

• Importance of thermodynamical WS change to understand tropical SW
CRF change

• Most of ACGMs simulate a SW CRF increase with di�erents
amplitudes → Interpretation of the robustness of this sign (IPSL Model)
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Thermodynamical CMIP5 cloud feedback

P  *    CRFω ω∆
IPSLCM5A

CNRMCM5
MPI
HadGEM−A
CCCma
MIROC5

I Robust positive SW CRF change over weak subsidence
regimes → Max on w500 = 20 ± 5 hPa/day
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Positive Low Cloud feedback

Brient and Bony 2012, Clim. Dyn. (in press)

Current

Weak subsidence

PBL

Free Tropo

(10³ J/kg)

[ACRF ] = −[R0]− (LH + SH) + [
−→
V .
−→
∇h] + [ω

∂h

∂P
] (W/m2)

Energetic analysis of the tropo MSE budget on current climate (h=cpT+gz+Lq)

I Increased by surface turbulent �uxes (LH + SH)

I Decreased by clear-sky radiative cooling ([R0]), Cloud radiative
cooling ([ACRF ])

I Decreased by vertical advection of MSE ([−ω ∂h
∂P ]) in the PBL
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Positive Low Cloud feedback

Brient and Bony 2012, Clim. Dyn. (in press)

Current

Weak subsidence

PBL

Free Tropo

Future

(10³ J/kg)

∆[ACRF ] = −∆[R0]−∆(LH + SH) + ∆[
−→
V .
−→
∇h] + ∆[ω

∂h

∂P
] (W/m2)

Change in energetic analysis for a Future Climate

I Enhanced import of low-MSE into the PBL

I At �rst order, due to Clausius-Clapeyron mechanism (∆q higher on
surface than on altitude)

I Weaker ACRF needed to balance the energy budget → Less

low-level clouds
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Positive Low Cloud feedback

Brient and Bony 2012, Clim. Dyn. (in press)

Current

Weak subsidence

PBL

Free Tropo

Future

Rh cst

(10³ J/kg)

∆[ACRF ] = −∆[R0]−∆(LH + SH) + ∆[
−→
V .
−→
∇h] + ∆[ω

∂h

∂P
] (W/m2)

Change in energetic analysis for a Future Climate

I Enhanced import of low-MSE into the PBL

I At �rst order, due to Clausius-Clapeyron relationship : ∆q(z) larger
at higher temperature (surface) than at altitude

I Weaker ACRF needed to balance the energy budget → Less

low-level clouds 13/26



MSE vs Normalized CRFSW change
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Conclusions
=⇒ CO2 vs T response ?

I Both contributes. Mostly in�uenced by SW CRF change

=⇒ Spread of tropical cloud response ?

I Weak subsidence regimes

I Convective regimes to lesser extent

=⇒ Robust mecanism of cloud feedback ?

I 3 groups of Low-Cloud feedbacks (weak negative, moderate
positive and highly positive) for same δMSE change (Cl-Cl)

=⇒ Observationnal tests ?

I Seasonal variability also suggests positive low-cloud radiative
response, but not discriminating of climate change low-cloud
feedback (except IPSL-CM5A model)

I What about interannual variability ?
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Thank you for your attention
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(2) Temperature response for ∆SW (Slow)

SW only

I Spread of slow response in subsidence regimes especially in SW
CRF change

I Zoom on some atmospheric models to study temperature
response over subsidence regimes
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MSE vs LCI change
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MSE vs LCICAL change
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