Interpretation of tropical low-clouds feedbacks in CMIP5 models

Florent Brient, Sandrine Bony

Laboratoire de Meteorologie Dynamique / IPSL (Paris, France)

May, 30th 2012

Objectives of CMIP5 analysis

 \Longrightarrow What is the relative role of clouds ajustment to CO $_2$ and SST change ?

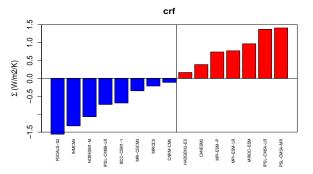
 \implies Which type of clouds contributes the most to the spread of tropical cloud response ?

 \implies Are there some robust mechanisms of low-cloud feedback ?

 \implies Is it possible to link the behaviours of clouds under global warming and under present-day natural variability ?

Objectives of CMIP5 analysis

 \Longrightarrow What is the relative role of clouds ajustment to CO_2 and SST change ?

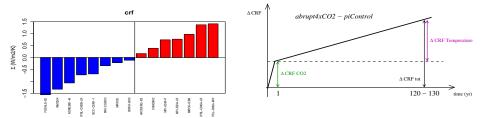

 \implies Which type of clouds contributes the most to the spread of tropical cloud response ?

 \implies Are there some robust mechanisms of low-cloud feedback ?

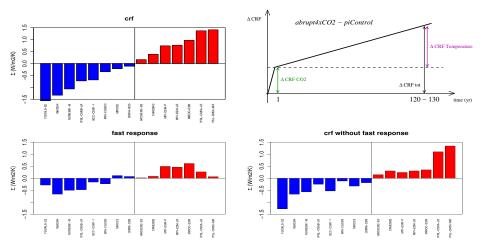
 \implies Is it possible to link the behaviours of clouds under global warming and under present-day natural variability ?

- Spectrum of configurations and sensitivity experiments
- Overall behaviour and physical mechanisms
- Comparison with observations and re-analysis

Spread of cloud responses in CMIP5 models

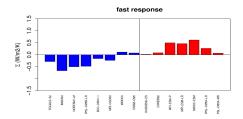


15 CMIP5 OAGCMs Abrupt4xCO₂ piControl

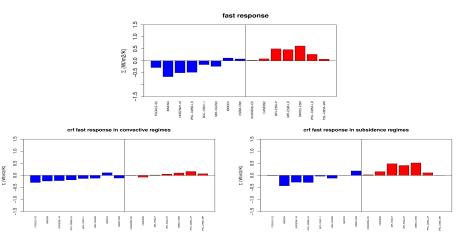

Update of Bony and Dufresne, 05

- Large range of tropical cloud radiative response
- As in *BD05*, low-sensitivity and high-sensitivity groups of models defined from CRF change.

CO₂ vs SST response (ocean)

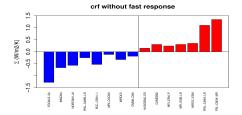


CO₂ vs SST response (ocean)

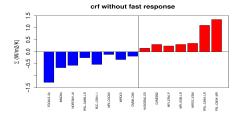


- Spread of CRF change due to both fast (CO₂) and slow (temperature) responses
- However the spread of Temperature dominates

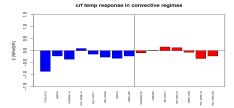
(1) CO_2 response (Fast)



(1) CO_2 response (Fast)

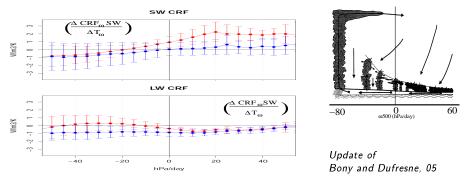


- Separation between Convective (left) and Subsidence (right) regimes
- Spread of fast response in <u>subsidence</u> regimes


(2) Temperature response (Slow)

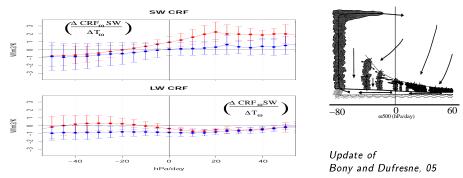
(2) Temperature response (Slow)

2



2 (MILEO) 1 - 1 - 0 - 05 - 01 - 1 - 1 - 0 - 05 - 00 - 05 - 00 - 00

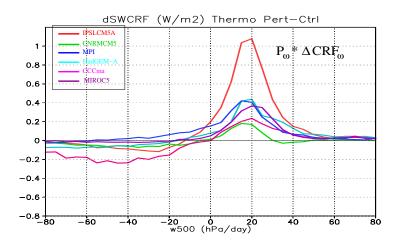
Spread of slow response also in <u>subsidence</u> regimes


crf temp response in subsidence regimes

Spread of cloud responses in CMIP5 models

- As in *BD05*, low-sensitivity and high-sensitivity groups of models defined from CRF change.
- Spread of the SW CRF response in *subsidence* regimes, of LW CRF response in convective regimes.
- However, the overall spread in NET response dominated by subsidence regimes (σ=0.74 W/m² vs σ=0.33 W/m²/K in convective regimes)

Spread of cloud responses in CMIP5 models



- As in *BD05*, low-sensitivity and high-sensitivity groups of models defined from CRF change.
- Spread of the SW CRF response in *subsidence* regimes, of LW CRF response in convective regimes.
- However, the overall spread in NET response dominated by subsidence regimes (σ=0.74 W/m² vs σ=0.33 W/m²/K in convective regimes)
- Zoom on some atmospheric models to study temperature response over subsidence regimes

Focus on 6 models Change in Tropical SW CRF (AMIP4K-AMIP)

AMIP models	Δ SW CRF (W/m ²)	
IPSL-CM5A-LR	4.5	
MPI-ESM-LR	2.6	
HadGEM2-A	1.2	
MIROC5	0.4	
CNRM-CM5	-0.5	
CanAM4	-1.7	

Thermodynamical CMIP5 cloud feedback

▶ Robust positive SW CRF change over weak subsidence regimes \rightarrow Max on w₅₀₀ = 20 ± 5 hPa/day

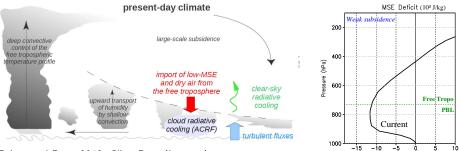
Focus on 6 models Change in Tropical SW CRF (AMIP4K-AMIP)

AMIP models	Δ SW CRF (W/m ²)	WS/Thermo (%)
IPSL-CM5A-LR	4.5	97
MPI-ESM-LR	2.6	95
HadGEM2-A	1.2	88
MIROC5	0.4	97
CNRM-CM5	-0.5	82
CanAM4	-1.7	50

 \implies Contribution of thermodynamical SW CRF change over Weak Subsidence (WS 0-30 hPa/day) compared to Thermo change

 \bullet Importance of thermodynamical WS change to understand tropical $\ensuremath{\mathsf{SW}}$ CRF change

Focus on 6 models Change in Tropical SW CRF (AMIP4K-AMIP)

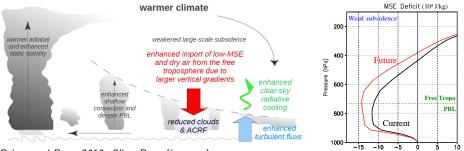

AMIP models	Δ SW CRF (W/m ²)	WS/Thermo (%)
IPSL-CM5A-LR	4.5	97
MPI-ESM-LR	2.6	95
HadGEM2-A	1.2	88
MIROC5	0.4	97
CNRM-CM5	-0.5	82
CanAM4	-1.7	50

 \implies Contribution of thermodynamical SW CRF change over Weak Subsidence (**WS** 0-30 hPa/day) compared to Thermo change

• Importance of thermodynamical WS change to understand tropical SW CRF change

• Most of ACGMs simulate a <u>SW CRF increase</u> with differents amplitudes \rightarrow Interpretation of the robustness of this sign (IPSL Model)

Positive Low Cloud feedback

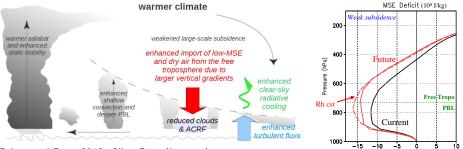

Brient and Bony 2012, Clim. Dyn. (in press)

$$[ACRF] = -[R_0] - (LH + SH) + [\overrightarrow{V} \cdot \overrightarrow{\nabla} h] + [\omega \frac{\partial h}{\partial P}] \qquad (W/m^2)$$

Energetic analysis of the **tropo MSE** budget on current climate $(h=c_pT+gz+Lq)$

- Increased by surface turbulent fluxes (LH + SH)
- Decreased by clear-sky radiative cooling ([R₀]), Cloud radiative cooling ([ACRF])
- Decreased by vertical advection of MSE $\left(\left[-\omega \frac{\partial h}{\partial P}\right]\right)$ in the PBL

Positive Low Cloud feedback

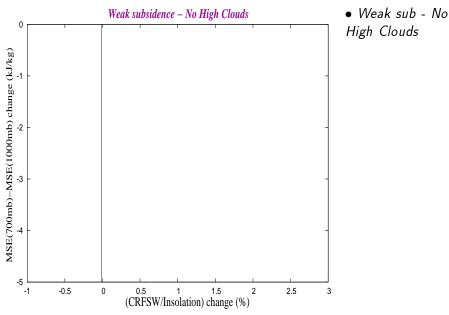

Brient and Bony 2012, Clim. Dyn. (in press)

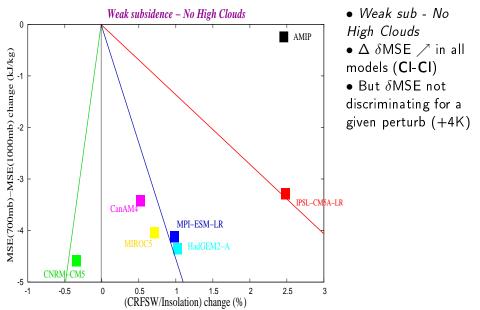
$$\Delta[ACRF] = -\Delta[R_0] - \Delta(LH + SH) + \Delta[\overrightarrow{V}, \overrightarrow{\nabla}h] + \Delta[\omega \frac{\partial h}{\partial P}] \qquad (W/m^2)$$

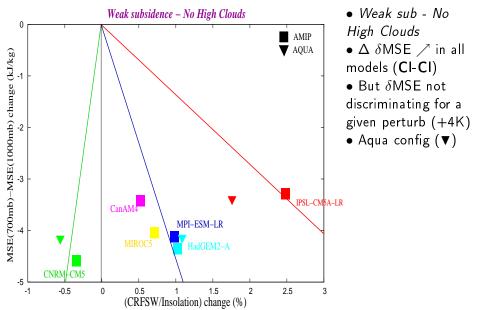
Change in energetic analysis for a Future Climate

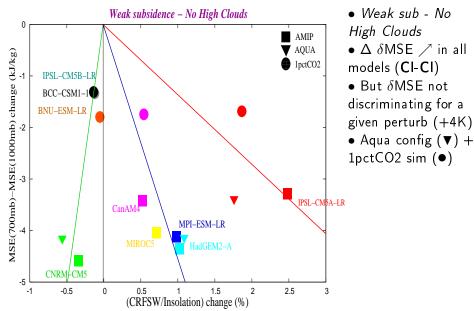
Enhanced import of low-MSE into the PBL

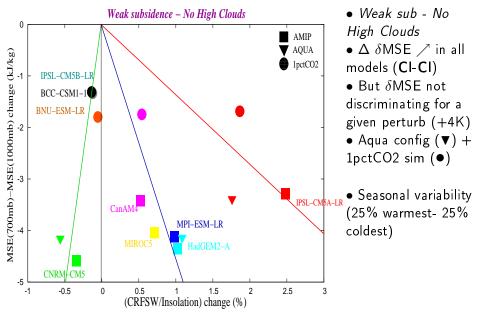
Positive Low Cloud feedback

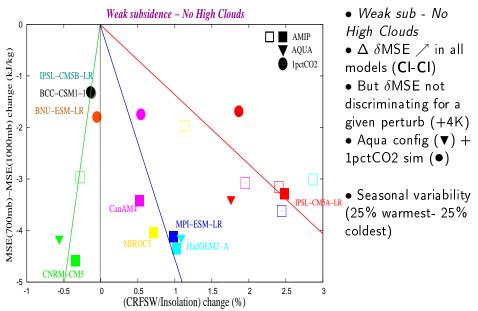


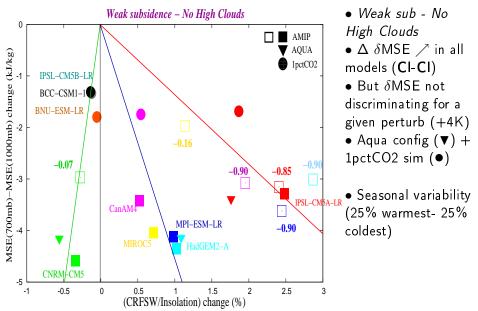

Brient and Bony 2012, Clim. Dyn. (in press)

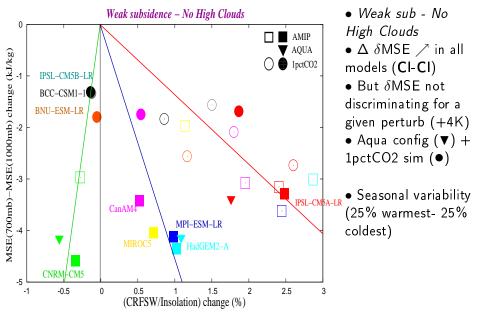

$$\Delta[ACRF] = -\Delta[R_0] - \Delta(LH + SH) + \Delta[\overrightarrow{V}, \overrightarrow{\nabla}h] + \Delta[\omega \frac{\partial h}{\partial P}] \qquad (W/m^2)$$

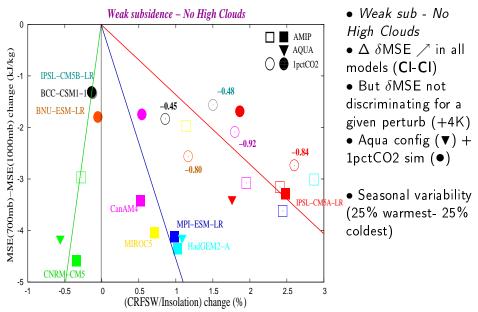

Change in energetic analysis for a Future Climate

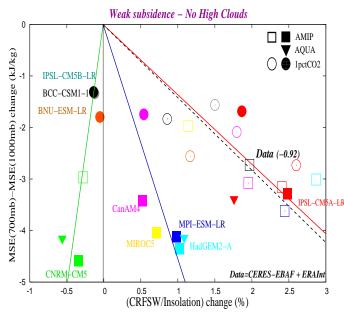

- Enhanced import of low-MSE into the PBL
- At first order, due to Clausius-Clapeyron relationship : Δq(z) larger at higher temperature (surface) than at altitude
- \blacktriangleright Weaker ACRF needed to balance the energy budget \rightarrow Less low-level clouds

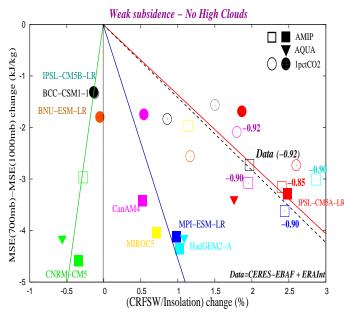












Weak sub - No High Clouds
Δ δMSE / in all models (CI-CI)
But δMSE not discriminating for a given perturb (+4K)
Aqua config (▼) + 1pctCO2 sim (●)

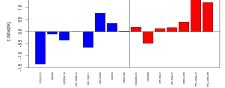
- Seasonal variability (25% warmest- 25% coldest)
- Good Correlation δ MSE/NSWCRF (Kawai and Teixeira 10, Kubar et al 11)

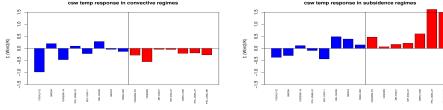
Weak sub - No High Clouds
Δ δMSE / in all models (CI-CI)
But δMSE not discriminating for a given perturb (+4K)
Aqua config (▼) + 1pctCO2 sim (●)

- Seasonal variability (25% warmest- 25% coldest)
- Good Correlation δ MSE/NSWCRF (Kawai and Teixeira 10, Kubar et al 11)

Conclusions

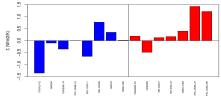
- $\implies CO_2 \text{ vs } T \text{ response } ?$
 - Both contributes. Mostly influenced by SW CRF change
- \implies Spread of tropical cloud response?
 - Weak subsidence regimes
 - Convective regimes to lesser extent
- \implies Robust mecanism of cloud feedback?
 - S groups of Low-Cloud feedbacks (weak negative, moderate positive and highly positive) for same δMSE change (CI-CI)
- $\implies \textit{Observationnal tests } ?$
 - Seasonal variability also suggests <u>positive</u> low-cloud radiative response, but **not discriminating** of climate change low-cloud feedback (except IPSL-CM5A model)
 - What about interannual variability?


Thank you for your attention


(2) Temperature response for Δ SW (Slow)

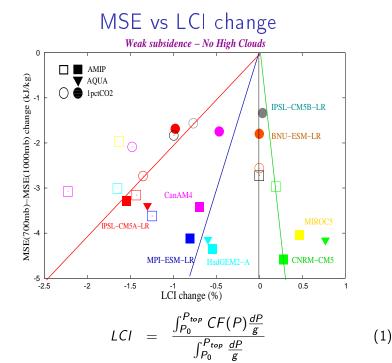
csw without fast response

9

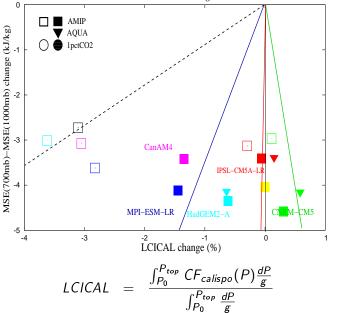


- Spread of slow response in subsidence regimes especially in SW CRF change
- Zoom on some atmospheric models to study temperature response over subsidence regimes

(2) Temperature response for Δ SW (Slow)


csw without fast response

csw temp response in subsidence regimes csw temp response in convective regimes 10 2 6.5 E (Wm2K) E (W/m2/K) 8 0.0 93 -0.5 1 2 з 6 -1.0 ę 5 9 NACM S-COM MPCCS 1102-141 016214 CAVES


- Spread of slow response in subsidence regimes especially in SW CRF change
- Zoom on some atmospheric models to study temperature response over subsidence regimes

29/26

MSE vs LCICAL change

Weak subsidence - No High Clouds

26/26

(2)