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Objectives of CMIP5 analysis

= What is the relative role of clouds ajustment to CO, and
SST change?

— Which type of clouds contributes the most to the spread
of tropical cloud response ?

= Are there some robust mechanisms of low-cloud
feedback ?

—> Is it possible to link the behaviours of clouds under global
warming and under present-day natural variability ?
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Objectives of CMIP5 analysis

= What is the relative role of clouds ajustment to CO, and
SST change?

— Which type of clouds contributes the most to the spread
of tropical cloud response ?

= Are there some robust mechanisms of low-cloud
feedback ?

—> Is it possible to link the behaviours of clouds under global
warming and under present-day natural variability ?

e Spectrum of configurations and sensitivity experiments
e Overall behaviour and physical mechanisms

e Comparison with observations and re-analysis
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Spread of cloud responses in CMIP5 models
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Bony and Dufresne, 05

> Large range of tropical cloud radiative response

> As in BDO05, low-sensitivity and high-sensitivity groups of models defined
from CRF change.
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» Spread of CRF change due to both fast (CO;) and slow (temperature)
responses

» However the spread of Temperature dominates
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» Separation between Convective
regimes
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(2) Temperature response (Slow)
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(2) Temperature response (Slow)

crf without fast response
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» Spread of slow response also in subsidence regimes
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Spread of cloud responses in CMIP5 models
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> As in BDO05, low-sensitivity and high-sensitivity groups of models defined

from CRF change.

> Spread of the SW CRF response in subsidence regimes, of LW CRF response

in convective regimes.

» However, the overall spread in NET response dominated by subsidence
regimes (0=0.74 W/m? vs =0.33 W/m?/K in convective regimes)
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Spread of cloud responses in CMIP5 models
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> As in BDO05, low-sensitivity and high-sensitivity groups of models defined
from CRF change.

> Spread of the SW CRF response in subsidence regimes, of LW CRF response
in convective regimes.

» However, the overall spread in NET response dominated by subsidence
regimes (0=0.74 W/m? vs =0.33 W/m?/K in convective regimes)

» Zoom on some atmospheric models to study temperature response over
subsidence regimes
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Focus on 6 models
Change in Tropical SW CRF

(AMIP4K-AMIP)

] AMIP models \ A SW CRF (W/m?) \
IPSL-CM5A-LR 45
MPI-ESM-LR 2.6
HadGEM2-A 1.2
MIROC5S 0.4
CNRM-CM5 -0.5
CanAM4 -1.7
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Thermodynamical CMIP5 cloud feedback
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» Robust positive SW CRF change over weak subsidence
regimes — Max on wsgg = 20 + 5 hPa/day
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Focus on 6 models
Change in Tropical SW CRF

(AMIP4K-AMIP)

[ AMIP models | A SW CRF (W/m?) [ WS/Thermo (%) |
IPSL-CM5A-LR 4.5 97
MPI-ESM-LR 2.6 95
HadGEM2-A 1.2 88
MIROC5 0.4 97
CNRM-CM5 -0.5 82
CanAM4 -1.7 50

= Contribution of thermodynamical SW CRF change over Weak
Subsidence (WS 0-30 hPa/day) compared to Thermo change

e Importance of thermodynamical WS change to understand tropical SW

CRF change
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Focus on 6 models
Change in Tropical SW CRF

(AMIP4K-AMIP)

[ AMIP models | A SW CRF (W/m?) [ WS/Thermo (%) |
IPSL-CM5A-LR 4.5 97
MPI-ESM-LR 2.6 95
HadGEM2-A 1.2 88
MIROC5 0.4 97
CNRM-CM5 -0.5 82
CanAM4 -1.7 50

= Contribution of thermodynamical SW CRF change over Weak
Subsidence (WS 0-30 hPa/day) compared to Thermo change

e Importance of thermodynamical WS change to understand tropical SW
CRF change

o Most of ACGMs simulate a SW_CRF increase with differents
amplitudes — Interpretation of the robustness of this sign (IPSL Model)
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Positive Low Cloud feedback
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h
[ACRF] = —|Ro| — (LH + SH) + [V.?h] + [wS—P] (W/m?)
Energetic analysis of the tropo MSE budget on current climate (h=c, T+gz+Lq)

» Increased by surface turbulent fluxes (LH + SH)

» Decreased by clear-sky radiative cooling ([Ry]), Cloud radiative
cooling ([ACRF])

» Decreased by vertical advection of MSE ([—wg—g]) in the PBL
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Positive Low Cloud feedback
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Change in energetic analysis for a Future Climate

» Enhanced import of low-MSE into the PBL
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Positive Low Cloud feedback
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h
A[ACRF] = —A[Ry| — A(LH + SH) + A[V?h] + A[wg—P] (W/m?)
Change in energetic analysis for a Future Climate
» Enhanced import of low-MSE into the PBL

» At first order, due to Clausius-Clapeyron relationship : Aq(z) larger
at higher temperature (surface) than at altitude

» \Weaker ACRF needed to balance the energy budget — Less

low-level clouds 13/26



MSE vs Normalized CRFSW change
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MSE vs Normalized CRFSW change
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MSE vs Normalized CRFSW change

Weak subsidence - No High Clouds
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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MSE(700mb)—MSE(1000mb) change (kJ/kg)
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MSE vs Normalized CRFSW change
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Conclusions

= CO, vs T response ?
» Both contributes. Mostly influenced by SW CRF change

= Spread of tropical cloud response 7
» Weak subsidence regimes

» Convective regimes to lesser extent

= Robust mecanism of cloud feedback ?

» 3 groups of Low-Cloud feedbacks ( , moderate
positive and highly positive) for same JMSE change (CI-Cl)

= Observationnal tests ?

» Seasonal variability also suggests positive low-cloud radiative
response, but not discriminating of climate change low-cloud
feedback (except IPSL-CM5A model)

» What about interannual variability ?
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Thank you for your attention
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» Spread of slow response in subsidence regimes especially in SW
CRF change

» Zoom on some atmospheric models to study temperature
response over subsidence regimes
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(2) Temperature response for ASW (Slow)
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» Spread of slow response in subsidence regimes especially in SW
CRF change

» Zoom on some atmospheric models to study temperature
response over subsidence regimes
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MSE(700mb)-MSE(1000mb) change (kJ/kg)

MSE vs LCI change
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MSE vs LCICAL change

Weak subsidence - No High Clouds
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