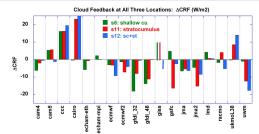
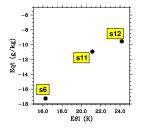

Estimating the low cloud-radiative feedback in a perturbed climate from steady-states of Scu-topped boundary layers

S. Dal Gesso, P. Siebesma, R. Neggers, S. de Roode

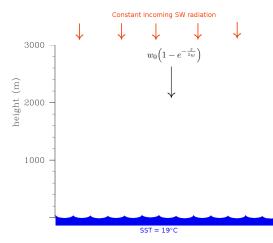
KNMI, Royal Netherlands Meteorological Institute TUD, Delft University of Technology


30 May 2012 EUCLIPSE/CFMIP meeting

A new framework


CGILS results:

A new framework



CGILS results:

Idea: new framework for mapping the entire phase space

- 1. Which are the conditions which arise marine boundary layer clouds deepening or breakup?
- 2. What is the effect of perturbed large scale conditions which are intended to mimic climate change?

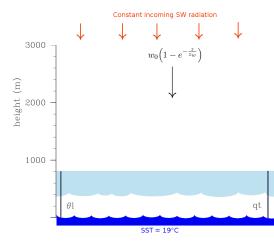
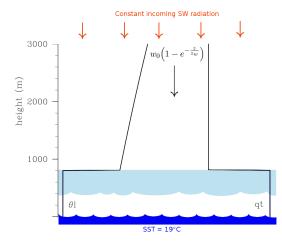
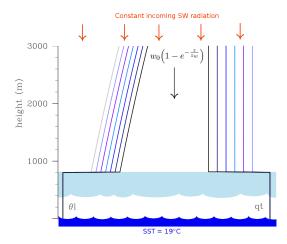
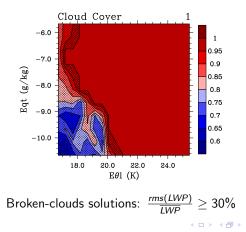




Image: a log and stevens, 2011 → Q Q

🔹 🗆 🕨 🚽 Bellon and Stevens, 2011 🛛 🗠 🔿 🔍 (~

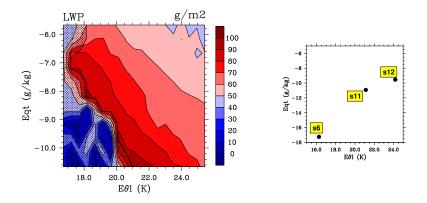
RACMO SCM results: cloud cover


Phase space definition: $E_{\theta_l} = \theta_l(z = 3000m) - \theta_{lsurf} \approx LTS$ $E_{q_t} = q_t(z = 3000m) - q_{tsurf}$

Steady-states solution of Scu-topped BL

S. Dal Gesso

RACMO SCM results: cloud cover


Phase space definition: $E_{\theta_l} = \theta_l(z = 3000m) - \theta_{lsurf} \approx LTS$ $E_{q_t} = q_t(z = 3000m) - q_{tsurf}$

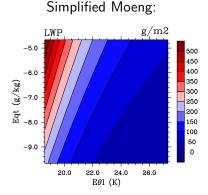
Perturbed climate

Conclusions and outlook

RACMO SCM results: liquid water path

Qualitative correspondence with CGILS cases.

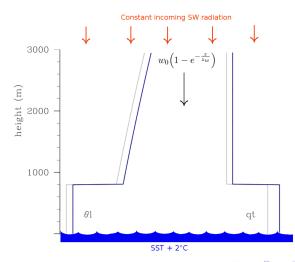
MLM results: different entrainment parameterizations


How important is the entrainment parameterization in determining the model fingerprint?

Steady-states solution of Scu-topped BL

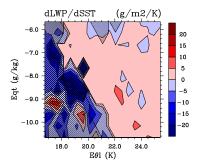

S. Dal Gesso

MLM results: different entrainment parameterizations


How important is the entrainment parameterization in determining the model fingerprint?

Lock (as in the SCM):

Perturbed climate (PC) set-up

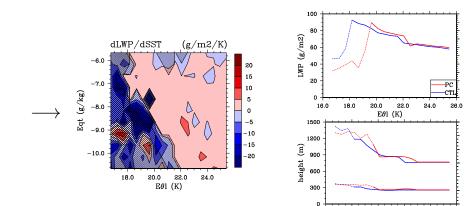

Steady-states solution of Scu-topped BL

≣⇒

Perturbed climate

Conclusions and outlook

RACMO SCM: PC results



Perturbed climate

16.0 18.0 20.0 22.0 24.0 26.0

Conclusions and outlook

RACMO SCM: PC results

Steady-states solution of Scu-topped BL

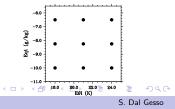
 $E\theta l$ (K)

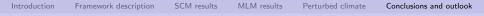
Э

Conclusions and outlook

Conclusions:

- this framework is now ready to become a new intercomparison study for CMIP SCMs (more on Friday);
- specific results for RACMO SCM:
 - fingerprint of the model, important role of entrainment parameterization;
 - → qualitative explanation with a MLM framework;
 - negative cloud feedback in the Scu dominated region of the phase space;
 - ➔ positive feedback in the broken-clouds region (earlier transition).


Conclusions and outlook


Conclusions:

- this framework is now ready to become a new intercomparison study for CMIP SCMs (more on Friday);
- specific results for RACMO SCM:
 - fingerprint of the model, important role of entrainment parameterization;
 - → qualitative explanation with a MLM framework;
 - negative cloud feedback in the Scu dominated region of the phase space;
 - ➔ positive feedback in the broken-clouds region (earlier transition).

Outlook:

LESs for some of the considered experiments:

Thank you!

Steady-states solution of Scu-topped BL

<ロ> <同> <同> < 同> < 同>