Estimate of forcing and feedbacks using both step and ramp idealized experiments

> Jean-Louis Dufresne IPSL/LMD, Paris

CMIP5 experiments

Ramp experiment: 1%/year CO2 increase

The abrupt 4xCO2 experiment

N(t) and $\Delta T(t)$ are GCMs outputs ; $\Delta Q(t)$ and λ need to be estimate

```
Step experiment (4xCO2) : \Delta Q(t) = Cte = \Delta Q_{4x}
```

```
\mathsf{N} \approx \Delta \mathsf{Q}_{4\mathsf{x}} + \lambda \; \Delta \mathsf{T}
```

```
• \Delta Q_{4x} and \lambda are
estimated by linear
regression between N
and \Delta T
```


N(t) and $\Delta T(t)$ are GCMs outputs ; $\Delta Q(t)$ and λ need to be estimate

Step experiment (4xCO2) : $\Delta Q(t) = Cte = \Delta Q_{4x}$

 $\mathsf{N} \approx \Delta \mathsf{Q}_{4x} + \lambda \; \Delta \mathsf{T}$

• ΔQ_{4x} and λ are estimated by linear regression between N and ΔT

• N' =
$$\Delta Q_{4x}$$
 + $\lambda \Delta T$

• ΔQ_{4x} and λ are estimated by minimizing ((N'-N)/ σ)²

N(t) and $\Delta T(t)$ are GCMs outputs ; $\Delta Q(t)$ and λ need to be estimate

Step experiment (4xCO2) : $\Delta Q(t) = Cte = \Delta Q_{4x}$

 $\mathsf{N} \approx \Delta \mathsf{Q}_{4\mathsf{x}} + \lambda \; \Delta \mathsf{T}$

• ΔQ_{4x} and λ are estimated by linear regression between N and ΔT

• N' =
$$\Delta Q_{4x} + \lambda \Delta T$$

• ΔQ_{4x} and λ are estimated by minimizing $((N'-N)/\sigma)^2$

• N'-N
$$\approx 0$$

 $\Delta Q_{4x} - N \approx \lambda \Delta T$

Ramp experiment (1%CO2/year) :

 $\begin{array}{l} \Delta \mathsf{Q}(\mathsf{t}) = \Delta \mathsf{Q}_{4\mathsf{x}} \\ \log(\mathsf{C}(\mathsf{t})/\mathsf{Co}) \ / \ \log(4) \end{array}$

• N'-N ≈ 0 $\Delta Q(t) - N \approx \lambda \Delta T$

N(t) and $\Delta T(t)$ are GCMs outputs ; $\Delta Q(t)$ and λ need to be estimate

Step experiment (4xCO2) : $\Delta Q(t) = Cte = \Delta Q_{4x}$

 $\mathsf{N} \approx \Delta \mathsf{Q}_{4x} + \lambda \; \Delta \mathsf{T}$

• ΔQ_{4x} and λ are estimated by linear regression between N and ΔT • N' = ΔQ_{4x} + $\lambda \Delta T$

• ΔQ_{4x} and λ are estimated by minimizing ((N'-N)/ σ)²

• N'-N
$$\approx 0$$

 $\Delta Q_{4x} - N \approx \lambda \Delta T$

Ramp experiment (1%CO2/year) :

 $\begin{array}{l} \Delta \mathsf{Q}(\mathsf{t}) = \Delta \mathsf{Q}_{4\mathsf{x}} \\ \log(\mathsf{C}(\mathsf{t})/\mathsf{Co}) \ / \ \log(4) \end{array}$

 ΔQ_{4x} and λ are estimated using both step and ramp experiment

Estimate of λ and ΔQ_{4x}

- λ and ΔQ_{4x} are fitted together, using the data of both the step (abrupt 4xCO2) and ramp experiment (1%/year CO2 increase)
- residual analysis on radiative flux (N-N'): the aberrant points (i.e. where residual > 3 standard deviation) are mainly present during first years of the step experiment

What causes the curvature of the relationship between the TOA flux and the surface temperature?

Partitioning the TOA flux : (all sky, clear sky, cloudy sky) / (net, LW, SW) **In the LW:** relationship between N and T almost linear for both clear and cloudy sky

Spread of the 4xCO2 forcing estimate

(17 CMIP5 models)

Spread of the climate feedback estimate

(17 CMIP5 models)

Difference of the estimates between the fitting methods (17 CMIP5 models)

Fitting using both step and ramp – fitting using only step experiment

Using both step and ramp experiment:

- decreases the CO₂ forcing , i.e. increases the « fast » response of to CO₂
- mainly due to the SW « fast » response of clouds

Reducing the estimate uncertainties ?

Conclusion

- Response of TOA flux may be partitioned in a direct response ΔQ to CO₂ and a response λ to Ts for both step and ramp experiments
- Using both step and ramp experiments:
 - the non linearity of λ occurs during the first 5-20 years
 - this is mainly due to the cloud response
 - on decadal to centennial time scales, λ may be assumed constant for ramp-like experiments
- Uncertainty on ΔQ and λ are quite large, larger than the statistical estimate alone, depends on the method fitting
- Using both step and ramp experiments increases the validity domain of the "feedback model", but not the accuracy of the estimate of ΔQ and $~\lambda$