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Background (cont’d)
1) Radiation in radiance L (W.m2.sr?) or Flux (W. m)

2) All bodies emit radiation its intensity and wavelength depend on the body
temperature
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Separation of emission spectrum
Sun emission: Max in the Visible
Earth emission: mostly the Infrared

Stefan Bolzmann Law: M = oT* and Planck’s Law: B, (T)
Wien Law: A, T = constant Fig. JL Dufresne



Background (cont’d)

3) Temperature of equilibrium :
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4) Interaction between radiation and a media by:

absorption / emission and-or scattering



Cloud - radiation interactions

An ensemble of A cloud parcel within an Clouds over the Earth
cloud particles atmospheric column
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Cloud - radiation interactions

A cloud parcel within an Clouds over the Earth
atmospheric column
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What drives interactions between an ensemble of cloud particles
and radiation?

1) When do an ensemble of cloud particles => Particle size .vs. Wavelength:
and radiation interact? the extinction efficiency
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=>The particle cross section (1 particle) at A : Cext = Qext.;w. r2  [m?]
For a cloud particle, usually : Qext = 2 in the visible domain

= Extinction coefficient (ensemble of particles) : O,,, ;, = fCext,A(r)n(r)dr [m1]



What drives interactions between an ensemble of cloud particles
and radiation?

2) Absorption or scattering?

Index of refraction of liquid and ice, function of the wavelength
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Consequences for cloud particles :
Scattering dominates the visible domain : wo(vis) =1
Absorption/emission dominate the thermal IR(but scattering also occurs): wo(IR) =0



What drives interactions between an ensemble of cloud particles and
radiation ?

3) Does the radiation change direction because of the interaction with cloud particles ?

Absorption / Emission (IR) => isotropic
Scattering (VIS) => non isotropic

The particle scattering phase function P(®)[no unit]
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autiful glory photographed from San Francisco’s Golden Gate Bridge and

by swirling fog above cold water (photograph courtesy of L. Zinkova). (b) Full-
merical Mie simulation of scattering of sunlight from 4.8-um-radius water drops
posed on the photograph of a glory taken from a commercial aircraft (image
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What drives interactions between an ensemble of cloud particles and
radiation ?

4) What happens when cloud particles contain a significant amount of non —water component ?

=>Absorption can occur in the VIS: the single scattering albedo decreases in the VIS (wo< 1)

5) Does the particle orientation in space (when non spherical) impact the interactions between
radiation and cloud particles ?
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S = =Change the Phase function P(®)
< => the Asymmetry factor : g decreases
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What drives interactions between an ensemble of cloud particles and
radiation ?

6) Radiation is not only intensity, but also a state of polarization:
The state of polarization of the light changes because of the interaction with cloud particles

Stokes vector
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Interactions between an ensemble of cloud particles and radiation:
What formalism do we use to describe these processes?

The cloud optical properties defined, at a given wavelength, as

Extinction coefficient(o,,,) and single scattering albedo (wo)
Scattering phase function P(®) and asymmetry factor (g)
Scattering matrix (for describing the state of polarization) M(®)
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Interactions between an ensemble of cloud particles and radiation

The cloud optical properties depend on coupling between wavelength and cloud microphysics:
particle size (distribution), composition, shape, orientation in space

The cloud optical properties are critical because they link the cloud microphysical properties
and its radiative properties

Il ( oext, w0, P(®), M(®) ) do NOT depend on the total amount of condensed water in the
cloud

Il whereas « cloud radiative properties » depend on the total amount of condensed water in
the cloud



Interactions between an ensemble of cloud particles and radiation:
How do we estimate (or compute) the cloud optical properties ?

By solving the Maxwell equations,

With a realistic assumption :

« the independent or incoherent scattering »:
cloud particles are separated by distance much larger than their size; therefore there is no

systematic relation between the phases of the waves scattered by the different particules,
and the scattered intensity can be simply added

And some simplifications:
properties of symmetry of the « cloud medium »

A « simple » case: spherical homogeneous particles adapted to liquid clouds particles

-
Cloud droplets rr:r:(*

Ann. Phys. 1908, Contributions to the optics of turbid media,
25,377 especially colloidal metal suspensions

" Gustav Mie



Interactions between an ensemble of cloud particles and radiation:
How do we estimate (or compute) the cloud optical properties ? (cont’d)

More complex cases: non spherical particles, less symmetric

Formes réelles Formes modélisées
Approaches:
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Even more complex cases: non spherical particles, not randomly oriented in space
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Another complexity : cloud particles containing significant amount of non water component

Eg.A. Macke, or L. Labonnote



Interactions between an ensemble of cloud particles and radiation

Since Mie, a large scientific community has been studying particles optical properties for
more than one century

=> the results are easy to use for cloud spherical particles, for cloud non spherical particles,
and for non pure liquid particles



Cloud - radiations interactions

An ensemble of A clgud parcel within an
atmospheric column

Clouds over the Earth
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An ensemble of particles (or cloud parcel) within an
atmospheric column

Hypothesis : At a given altitude level the composition of the column is homogeneous;
fully clear or fully cloudy with constant optical properties

= >|ce water content:
IWC= p4/3.7tr, .+ .N [g.m-3]

=>|ce cloud layer optical thickness:
Ty, = Oy ext- AZ [no unit]

&

Q o, N = > Liquid Water Content: LWC
et LWC= p4/3.7r .+ .N [g.m-3]
ﬂz =>Liquid cloud layer optical thickness:
R ; = 22 L=< 0 7 N T, =0 AZ [no unit]
Oext, w0 Tliq ’
o 89

/ z => T)= 3 LWC 'Qk,ext' AZ'/(4p r-I,ef'f)
Cloud droplets S:;r:(

Total column optical thickness: T, _column =<, +T,,



How do we describe the interactions between radiations and the
element composing the atmospheric column (including clouds) ?

with the radiative transfer equation

m in () At M fixed:
do’ | dL_abs = - L, (I)d!
tropopause
4 dL_sca=-o,, L, (l)d
¢ ds

| 1 | |
o dosaldo'~do)=0,dl i} LM )

espace

P(©), M(©)

dL_emis = o, B,(T)dl

dw

L_out, (I+dl)

surface % = —(0,+0,)L(D)+B(T)o, + % [ P =DL)Ydw

espace




Which cloud properties drive the radiances and fluxes within the
atmospheric column ?

In stratified atmosphere, at a given A, over ocean (no surface reflection)

L(7) = L(10) exp(—(T - 10)) + ]dt‘ exp(-t ){(1 —w,(Tt)B(T(T") + M f f P(T ,H)L(r')dw‘}
’ 4

In the IR, no scattering in cloud particles (wo = 0) =>t and Tcloud drive L_IR

tropopause

v l Ligaon (@ = [ d7 exp(-){BT (@)}

T L., (¥ =Ly, exp(-7)+ f dt' exp(-T /{B(T(t"))}

Approximation for opaque clouds: T>>1 =>L,;is close to emission

by a black body
Lig jon (T) = LIR’MP (t) = B(Tcloud)

Oext, w0 Tcloud
P(8), M(©) O}J

Approximation for optically thin clouds: T<<1

LIR up (T) = LIR surf + T(B(TCloud) - LIR ,surf)

NB: In the IR we can also use cloud émissivity (¢) instead of cloud IR optical thickness: g + exp(— IR) =1



Which cloud properties drive the radiances and fluxes within the
atmospheric column ?

In stratified atmosphere, at A fixed, over ocean (no surface reflection)

L(7) = L(10) exp(—(T - 10)) + }dt‘ exp(-t ){(1 —w,(Tt)B(T(T") + M f f P(T ,H)L(r')dw‘}
’ 4

In the VIS, no absorption in cloud particles (wo = 1)=>t and P(®) drive Lvis

tror@/ L,y toon () = Ly €Xp(=T) + f dt' exp(- r){ [[P.0)LE@ )da)}
f | | L | | !
Ly () = f dv' exp(-t >{ ot | RECROLECTLE }

W/\j Approximation for opaque clouds: T>>1 =>L,, becomes isotropic
Oext, w0 T because of multiple scattering

P(©), M(©)

Loy = Ly 1 (D) = ]dr' exp(-T ){ﬁ If P(r'ﬁ)L(r')dw'}

Approximation for optically thin clouds: T <<1 => close to single scattering

L, (@ x=1-g)T



How do we estimate (compute) the radiative
transfer in a cloudy column ?

Resolving the Radiative transfert Equation to estimate the radiances and fluxes at all levels
in the atmosphere: computing the radiances, and integrating it over directions to obtain
fluxes

tropopause Main constrains for clouds: Anisotropic in the SW & Clouds can be optically thick

L

Several methods:
various analytical formulation, and numerical computations

Ex; Successive ordre of scattering

Ex; Discrete ordinate method

Ex; Doubling adding method =>POWERFUL for OPTICALLY THICK CLOUDS
Ex; Monte Carlo

Ex; approximate two streams (Eddington method) and four streams methods for fluxes

The results of these computations depend significantly on the amount of condensed water
in the cloud, the cloud temperature and the cloud optical properties

surface
In the above mentioned methods, the atmosphere is assumed to be plane-parallel infinite.



Uncertainties on the computation of radiative transfer
in a cloudy column ?

* The uncertainty is small within « the plane parallel infinite approximation »

Intercomparison exercises: http://circ.gsfc.nasa.gov/CIRC publications.html

NB: Do not misunderstand uncertainty in the radiative transfer computation with
uncertainty in the optical properties: the cloud optical properties are very variable

e Butin reality: clouds are not necessarily plane paralle infinite | reflectad fux at TOA  Barker. 2012
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Is the column (atm + surf) warmed or cooled by radiative
exchanges ? the Net downward Flux (Fnet)

Fnet=Fin—-F out Fnet >0 =>the column warms

Fnet < 0 => the column cools

VB

OP OF Th Fnet_TOA indicates how the entire column (atmosphere+surf)

TMOSPHERE warms/cools

Fnet_Atmosphere indicates how the atmosphere warms/cools:
Fnet_Atmosphere = Fnet_TOA — Fnet_Surface

Fnet_Surface indicates how the ocean and surface warms/cools




Do clouds contribute to warm or cool the column (atm + surf) ?
the Cloud Radiative Effect (CRE)

CRE = Fnet_allsky — Fnet_cloudfreesky CRE >0 =>the clouds contribute to warm
CRE < 0 => the clouds contribute to cool
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Do clouds contributes to warm or cool the column (atm + surf) ?

CRE = CRE_SW + CRE_LW

= (Fnet_allsky — Fnet_cloudfreesky).,, + (Fnet_allsky — Fnet_cloudfreesky),,

—_—

TOP OFTQ

TMOSPHER

| IETTELY
=
=7
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OP OF Th
TMOSPHERE

= CRE_TOA
= CRE_TOA_LW + CRE_TOA_SW

CRE_ATM
CRE_ATM_LW + CRE_TOA_SW

CRE_SURF
CRE_SURF_LW + CRE_SURF_SW



Does this mean cloud warm or cool the entire column ?
The surface ? The Atmosphere ?

tro ause
PP and on the surface

)K/ Fsw Lvis, depends on clouds : T 4.4 (and g) with T, =P»LWC/r

Flw Liw depends on clouds: Tcloud and T, 5,4 (OF €¢0uq) P LWC.Qext/.r
Tah and on the surface
(and on atmospheric gazes, T(z))

- Tdoud
3 atmospheric layers + surface
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Does this mean cloud warm or cool the entire column ?
The surface ? The Atmosphere ?

More complex cases:

- o= ’,_.— p—
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OVER ICE or SNOW




Cloud - radiation interactions

An ensemble of A cloud parcel within an

cloud particles atmospheric column Clouds over the Earth
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Clouds & radiation at global scale

Hypothesis:  The Atmosphere = a sum of n independent atmospheric « homogeneous columns™ »
with small (and not constant) horizontal extents (S; )

* At a given altitude level the composition of the column is homogeneous fully clear or fully cloudy
with constant optical properties
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The global flux: F =ECZ.FZ. n = the total nb of columns
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C, is the cover of 1 column (i): C;=—— => ECi =1
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S Earth

F. is the flux for 1 homogeneous column (i)
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Clouds & radiation at global scale

FNET_TOA = Fin = Fout

400

=FNET_TOA_SW + FNET_TOA_LW
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=>The Earth’s radiation budget :
driver of the atmospheric circulation
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The cloud radiative effect modulates the Earth’s radiative budget



Net Downward Shortwave Radiation at Top-of-Atmosphere (CERES)

FNET_TOA= Fin = Fout
No Aerosols; No Clouds (291 Wm~2)

CRETOA = FNET_TOA_aIIsky - I:NET_TOA—cIoudyfreesky
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Net Downwarc{l Longwave I#adiation at Top-of-Atmosphere (CERES)

F =F -F -
NET_TOA n out CRETOA - FNET_TOA_aIIsky - I:NET_TOA—cIoudyfreesky

No Aerosols; No Clouds (-267 Wm2) Cloud Radiative Effect (27 Wm2)
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Net Cloud Radiative Effect/(TOA, ATM, SFC) (CERES)

Top-of-Atmosphere (-20.6 Wm2) Within-Atmosphere (2 Wm~2)

S

- High Clouds
- SW & LW CRE cancel at TOA (both large).
- SW CRE (cooling) dominates at SFC.
- Positive within-atmos net CRE (warming).

- Low Clouds
- SW CRE (cooling) dominates at TOA.

- SW & LW CRE cancel at SFC (both large).

oy — = [mmerm— - Negative within-atmos net CRE

N. Loeb



Height (Km)

Vertical Distribution of Longwave Atmospheric Heating Rate
Clear-Sky All-sky

Height (Km)
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Clouds warm the upper troposhere and cool the lower troposphere S. Kato



In summary: Clouds and radiation...

... from a cloud particle ...
* * Key variables, the optical properties: Cext, Csca, wo, P(®), g

crysmsfg@;} N Snowflakes Sensitive to A, r_eff, n(r) -- simplified by the composition (water)
4" % ®  Graupeland hai
o | f’“o O Results for spheres (liquid) and non spherical (ice) idealized shapes: typical
Cloud droplt $5%e e € o R values and computation codes are available

... to a cloud parcel within an atmospheric column...

\_/ Key variables: LWC (LWP), IWC(IWP), T,;s Tz L up,sW/tws L down twyzsws F up,swiwr B down,tw/sw
Sensitive to : the amount and the vertical distribution (T, 4 0f condensed water, the

L ——) optical properties, the surface properties

L

S|

Solving the radiative transfer equation: results and codes 1D and 3D available
...the simple analytical formulas are valid in very few idealized cases

.. to the Earth radiative budget

Key variables: Ci, Fi, Fsw, Flw, Fnet (at TOA, surface and within atmos),
the CRE

Sensitive to: all what has been mentionned above

¢

requires to know every time, every where, the state of the atmosphere



Learn to use optical properties

Optimize radiative transfer computations for specific applications (ie. satellite
retrievals, or GCMs): time .vs. accurancy

Impact of 3D SW effects , depends on the scale
Radiative transfer is very sensitive to the detailed description of the atmospheric

column:
-global scale mean fluxes, Ts estimates






